题目内容
一棵树因雪灾于A处折断,如图所示,测得树梢触地点B到树根C处的距离为4米,∠ABC等于45°,树干AC垂直于地面,那么此树在未折断之前的高度为多少米?(答案保留根号)
解;由题意得,在△ACB中,∠C=90°
∵∠ABC=45°
∴∠A=45°
∴∠ABC=∠A
∴AC=BC
∵BC=4
∴AC=4
由AC2+BC2=AB2得
AB=
;
所以此树在未折断之前的高度为(4+
)米.
分析:由于∠ABC=45°,即△ABC是等腰Rt△,AC=BC=4米,由勾股定理可求得斜边AB的长;进而可求出AB+AC的值,即树折断前的高度.
点评:此题主要考查的是勾股定理的应用,善于观察题目的信息是解题是学好数学的关键.
∵∠ABC=45°
∴∠A=45°
∴∠ABC=∠A
∴AC=BC
∵BC=4
∴AC=4
由AC2+BC2=AB2得
AB=
所以此树在未折断之前的高度为(4+
分析:由于∠ABC=45°,即△ABC是等腰Rt△,AC=BC=4米,由勾股定理可求得斜边AB的长;进而可求出AB+AC的值,即树折断前的高度.
点评:此题主要考查的是勾股定理的应用,善于观察题目的信息是解题是学好数学的关键.
练习册系列答案
相关题目