题目内容
已知一个多边形的内角和是900°,则这个多边形是( )
A. 四边形 B. 五边形 C. 六边形 D. 七边形
我市有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计307元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.
(1)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式,并写出自变量x的取值范围.
(2)李经理将这批野生茵存放多少天后出售可获得最大利润W元?(利润=销售总额﹣收购成本﹣各种费用)
如图△ABC中,已知D、E、F分别是BC、AD、CE的中点,且S△ABC=4,那么阴影部分的面积等于…( )
A. 1 B. 2 C. D.
某水库堤坝的横断面如图,迎水坡AB的坡度是,堤坝高BC=50m,则AB= m.
如图,Rt△ABC中,∠C=90°,AB=4,F是线段AC上一点,过点A的⊙F交AB于点D,E是线段BC上一点,且ED=EB,则EF的最小值为 ( )
A. 3 B. 2 C. D. 2
已知A(0,1),B(2,0),C(4,3).
(1)在坐标系中描出各点,画出三角形ABC;
(2)求三角形ABC的面积;
(3)设点P在坐标轴上,且三角形ABP与三角形ABC的面积相等,请直接写出点P的坐标.
如图,将一张矩形纸片ABCD沿EF折叠,使顶点C,D分别落在点C’,D’处,C’E交AF于点G.若∠CEF=70°,则∠GFD’= ▲ °.
在平面直角坐标系中,A(a,0),B(0,b),a,b满足=0,C为AB的中点,P是线段AB上一动点,D是x轴正半轴上一点,且PO=PD,DE⊥AB于E.
(1)求∠OAB的度数
(2)当点P运动时,PE的长是否变化?若变化,请说明理由;若不变,请求PE的长
(3)若∠OPD=45度,求点D的坐标
若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是( )
A. 菱形 B. 对角线互相垂直的四边形
C. 矩形 D. 对角线相等的四边形