题目内容
(5分)分解因式:= .
甲乙两地相距千米,一艘轮船往返两地,顺流用小时,逆流用小时,那么这艘轮船在静水中的航速与水流速度分别是( )
A.
B.
C.
D.
(4分)(2015•天水)下列函数(其中n为常数,且n>1)
①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx(x<0)中,y的值随x的值增大而增大的函数有 个.
(13分)如图,直线与x轴、y轴分别交于点A、B.抛物线经过A、B,并与x轴交于另一点C,其顶点为P,
(1)求a,k的值;
(2)在图中求一点Q,A.B、C为顶点的四边形是平行四边形,请直接写出相应的点Q的坐标;
(3)抛物线的对称轴上是否存在一点M,使△ABM的周长最小?若存在,求△ABM的周长;若不存在,请说明理由;
(4)抛物线的对称轴是上是否存在一点N,使△ABN是以AB为斜边的直角三角形?若存在,求出N点的坐标,若不存在,请说明理由.
(5分)如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为 .
(5分)估算的值( )
A.在1到2之间 B.在2到3之间 C.在3到4之间 D.在4到5之间
(10分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.
(1)求证:DC=DE;
(2)若tan∠CAB=,AB=3,求BD的长.
(4分)在某次射击训练中,甲、乙、丙、丁4人各射击10次,平均成绩相同,方差分别是S甲2=0.35,S乙2=0.15,S丙2=0.25,S丁2=0.27,这4人中成绩发挥最稳定的是( )
A.甲 B.乙 C.丙 D.丁
计算:(﹣1)0+|﹣3|﹣.