题目内容
计算:| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+4 |
| 1 |
| 1+2+3+…+n |
分析:首先从第n个式子分母入手:1+2+3+4+…+n=
,得出
,=
=
,从而可以表示出原式中各项,再利用拆项法展开原式,从而求出原式的值.
| n(n+1) |
| 2 |
| 1 |
| 1+2+3+…+n |
| 1 | ||
|
| 2 |
| n(n+1) |
解答:解:当第n个式子分母是:
1+2+3+4+…+n
=
,
∴
,
=
,
=
,
∴
+
+
+…+
,
=
+
+
+…+
,
=2(
+
+
+…+
),
=2(
-
+
-
+
-
+…+
-
),
=2(
-
),
=1-
,
=
.
1+2+3+4+…+n
=
| n(n+1) |
| 2 |
∴
| 1 |
| 1+2+3+…+n |
=
| 1 | ||
|
=
| 2 |
| n(n+1) |
∴
| 1 |
| 1+2 |
| 1 |
| 1+2+3 |
| 1 |
| 1+2+3+4 |
| 1 |
| 1+2+3+…+n |
=
| 2 |
| 2(2+1) |
| 2 |
| 3(3+1) |
| 2 |
| 4(4+1) |
| 2 |
| n(n+1) |
=2(
| 1 |
| 2×(2+1) |
| 1 |
| 3×(3+1) |
| 1 |
| 4×(4+1) |
| 1 |
| n(n+1) |
=2(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+1 |
=2(
| 1 |
| 2 |
| 1 |
| n+1 |
=1-
| 2 |
| n+1 |
=
| n-1 |
| n+1 |
点评:此题主要考查了有理数的运算中拆项问题,得出1+2+3+4+…+n=
,以及
=
,是解决问题的关键.
| n(n+1) |
| 2 |
| 1 |
| 1+2+3+…+n |
| 2 |
| n(n+1) |
练习册系列答案
相关题目