题目内容
以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )
A. B. C. D.
如图1,抛物线:与:相交于点O、C,与分别交x轴于点B、A,且B为线段AO的中点.
(1)求的值;
(2)若OC⊥AC,求△OAC的面积;
(3)抛物线C2的对称轴为l,顶点为M,在(2)的条件下:
①点P为抛物线C2对称轴l上一动点,当△PAC的周长最小时,求点P的坐标;
②如图2,点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.
分解因式:= .
设A=.
(1)化简A;
(2)当a=3时,记此时A的值为f(3);当a=4时,记此时A的值为f(4);…
解关于x的不等式:,并将解集在数轴上表示出来.
因式分【解析】= .
如图,几何体是由3个完全一样的正方体组成,它的左视图是( )
(1)计算: .
(2)解不等式组: .
如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.
(1)求一次函数与反比例函数的解析式;
(2)求△AOB的面积.
下列计算正确的是( )
A. B.
C. D.