题目内容
如图,在△ABC中,∠A=62°,∠B=74°,∠ACB的平分线交AB于D,DE∥BC交AC于E,求∠EDC的度数.
单项式xy2的系数是_________.
已知:平行四边形ABCD的两边AB、AD的长是关于x的方程x2﹣mx+-=0的两个实数根.
(1)m为何值时,四边形ABCD是菱形?求出这时菱形的边长;
(2)若AB的长为2,那么平行四边形ABCD的周长是多少?
如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为( )
A. 45° B. 55° C. 60° D. 75°
一元二次方程x2﹣3x+2=0 的两根分别是x1、x2,则x1+x2的值是( )
A.3 B.2 C.﹣3 D.﹣2
x2+kx+9是完全平方式,则k=_____.
已知x+y=﹣5,xy=3,则x2+y2=( )
A. 25 B. ﹣25 C. 19 D. ﹣19
如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A、B、C分别在l1、l2、l3上,AC交l2于D,∠ACB=90°.已知l1与l2的距离为2,l2与l3的距离为6,则的值为_____.
如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求点A、B、C的坐标;
(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;
(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;
(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=DQ,求点F的坐标.