题目内容
【题目】已知:如图,在
中,
,
,
.点
从点
开始沿
边向点
以
的速度移动,同时点
从点
开始沿
边向点
以
的速度移动.当一个点到达终点时另一点也随之停止运动,设运动时间为
秒,
![]()
求几秒后,
的面积等于
?
求几秒后,
的长度等于
?
运动过程中,
的面积能否等于
?说明理由.
【答案】(1)
或
秒后
的面积等于
;(2)当
或
时,
的长度等于
;(3)
的面积不能等于
.
【解析】
(1)设经过x秒钟,△PBQ的面积等于6平方厘米,根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解.
(2)根据PQ=5,利用勾股定理BP2+BQ2=PQ2,求出即可;
(3)通过判定得到的方程的根的判别式即可判定能否达到8cm2.
(1)设经过x秒以后△PBQ面积为6
×(5x)×2x=6
整理得:x25x+6=0
解得:x=2或x=3
答:2或3秒后△PBQ的面积等于6cm2.
当
时,在
中,∵
,
∴
,
,
,
,
,
∴当
或
时,
的长度等于
.
设经过
秒以后
面积为
,
![]()
整理得:![]()
![]()
∴
的面积不能等于
.
【题目】某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.
(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.
类别 | 频数(人数) | 频率 |
武术类 | 0.25 | |
书画类 | 20 | 0.20 |
棋牌类 | 15 | b |
器乐类 | ||
合计 | a | 1.00 |
(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.
请你根据以上图表提供的信息解答下列问题:
①a=_____,b=_____;
②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;
③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.
![]()