题目内容

1.如图,AB∥CD,O为∠BAC和∠ACD的平分线的交点,OE⊥AC于点E,且OE=4,则两平行线间的距离为8.

分析 过点O作MN,MN⊥AB于M,求出MN⊥CD,则MN的长度是AB和CD之间的距离;然后根据角平分线的性质,分别求出OM、ON的长度是多少,再把它们求和即可.

解答 解:如图,过点O作MN,MN⊥AB于M,交CD于N,

∵AB∥CD,
∴MN⊥CD,
∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=4,
∴OM=OE=4,
∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,
∴ON=OE=4,
∴MN=OM+ON=8,
即AB与CD之间的距离是8.
故答案为:8.

点评 此题主要考查了角平分线的性质和平行线之间的距离的应用,要熟练掌握,解答此题的关键是要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网