题目内容


如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.

(1)求证:∠FMC=∠FCM;

(2)AD与MC垂直吗?并说明理由.


(1)证明:∵△ADE是等腰直角三角形,F是AE中点,

∴DF⊥AE,DF=AF=EF,又∵∠ABC=90°,∠DCF,∠AMF都与∠MAC互余,

∴∠DCF=∠AMF,

在△DFC和△AFM中,,∴△DFC≌△AFM(AAS),

∴CF=MF,∴∠FMC=∠FCM;

(2)AD⊥MC,

理由:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,

∴DE∥CM,∴AD⊥MC.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网