ÌâÄ¿ÄÚÈÝ
7£®£¨1£©ÇóÁ½¸öʱ¼ä¶ÎµÄº¯Êý¹ØÏµÊ½£»
£¨2£©Õë¶ÔÕâÖÖÖ²ÎïÅжϴÎÈÕÊÇ·ñÒª²ÉÈ¡·À˪¶³´ëÊ©£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝͼÏ󣬷ֱð´Óº¯ÊýͼÏóÉÏÈ¡Á½µã£¬ÀûÓôý¶¨ÏµÊý·¨¿ÉÇó³öÁ½¸öº¯ÊýµÄ½âÎöʽ£»
£¨2£©y1¡¢y2·Ö±ðµÈÓÚ0´úÈëÁ½¸öº¯Êý½âÎöʽ£¬¿ÉÇó³öx1¡¢x2£¬´ÓͼÏóÖпÉÖª£¬x2-x1¾ÍÊÇÖ²ÎïËù´¦0¡æÒÔϵÄʱ¼ä£¬Óë3×÷±È½Ï¾Í¿ÉÒÔÁË£®
½â´ð ½â£º£¨1£©Éè0ʱ¡«5ʱµÄº¯Êý±í´ïʽΪy=k1x+b1£¬
¡ßµã£¨0£¬5£©£¬£¨5£¬-3£©ÔÚÆäͼÏóÉÏ£¬
¡à$\left\{\begin{array}{l}{b=5}\\{5k+b=-3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{8}{5}}\\{b=5}\end{array}\right.$£®
¡à0ʱ¡«5ʱµÄº¯Êý±í´ïʽΪy=-$\frac{8}{5}$x+5£¬
Éè5ʱ¡«8ʱµÄº¯Êý±í´ïʽΪy=k2x+b2£¬
¡ßµã£¨5£¬-3£©£¬£¨8£¬6£©ÔÚÆäͼÏóÉÏ£¬
¡à$\left\{\begin{array}{l}{-3=5k+b}\\{6=8k+b}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=3}\\{b=-18}\end{array}\right.$£®
¡à5ʱ¡«8ʱµÄº¯Êý±í´ïʽΪy=3x-18£»
£¨2£©Áîy=0£¬Ôòx1=$\frac{25}{8}$£¬x2=6£¬
¡ßx2-x1=$\frac{23}{8}$£¼3£¬
¡à²»ÐèÒª²ÉÈ¡·À˪¶³´ëÊ©£®
µãÆÀ ±¾Ì⿼²éÁËÓÃÒ»´Îº¯Êý½â¾öʵ¼ÊÎÊÌ⣬´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬ÒÔ¼°ÇóÍ¬Ò»×ø±êÖáÉÏÁ½µãÖ®¼äµÄ¾àÀëµÄ֪ʶ£¬ÊìÁ·ÕÆÎÕ´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽÊǽâÌâµÄ¹Ø¼ü£®
| A£® | 3x£¨x+y£©+3x2+3xy | B£® | -2x2-2xy=-2x£¨x+y£© | C£® | £¨x+5£©£¨x-5£©=x2-25 | D£® | x2+x+1=x£¨x+1£©+1 |
| A£® | 3+5-x=2£¨x-4£© | B£® | 3-5-x=2£¨4-x£© | C£® | 3-5-x=2£¨x-4£© | D£® | 3-5+x=-2£¨x-4£© |