题目内容
若|x|=4,|y|=7,且x+y>0,那么x﹣y的值是( )
A. 3或11 B. 3或﹣11 C. ﹣3或11 D. ﹣3或﹣11
D 【解析】根据绝对值的性质,可知x=±4,y=±7,然后根据x+y>0,可知x=4,y=7或x=-4,y=7,因此x-y=4-7=-3或x-y=-4-7=-11. 故选:D.数轴上一点A,一只蚂蚁从A出发爬了4个单位长度到了原点,则点A所表示的数是( )
A. 4 B. ﹣4 C. ±8 D. ±4
查看答案的倒数是( )![]()
A. B. ![]()
C. ![]()
D. ![]()
已知多项式A,B,计算A﹣B.某同学做此题时误将A﹣B看成了A+B,求得其结果为A+B=3m2﹣2m﹣5,若B=2m2﹣3m﹣2,请你帮助他求得正确答案.
查看答案已知|a﹣2|+(b+1)2=0,求5ab2﹣|2a2b﹣(4ab2﹣2a2b)|的值.
查看答案出租车司机老李某天上午营运全是在东西走向的胜利路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:公里 )如下:
+8,+4,﹣10,﹣8,+6,﹣2,﹣5,﹣7,+4,+6,﹣8,﹣9
(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?
(2)将最后一名乘客送 到目的地时,老王距上午出发点多远?
(3)若汽车耗油量为0.4升/公里,这天上午老王耗油多少升?
查看答案 试题属性- 题型:单选题
- 难度:困难
现有60件某种产品,其中有3件次品,那么从中任意抽取1件产品恰好抽到次品的概率是_____。
【解析】∵这60件产品中,每一件被抽到的机会是均等的, ∴任意抽取1件恰好是次品的概率为:P(抽到次品)=.如图,水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面,将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是( )
![]()
A. 10πcm B. 20πcm C. 24πcm D. 30πcm
查看答案若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是( )
A. k>﹣1 B. k>﹣1且k≠0 C. k<1 D. k<1且k≠0
查看答案在a2□4a□4的空格□中,任意填上“+”或“﹣”,在所有得到的代数式中,能构成完全平方式的概率是( )
A. 1 B.
C.
D. ![]()
已知正六边形的边长为2,则它的内切圆的半径为( )
A. 1 B.
C. 2 D. 2![]()
已知一组数据:16,15,16,14,17,16,15,则众数是( )
A. 17 B. 16 C. 15 D. 14
查看答案 试题属性- 题型:填空题
- 难度:中等
已知10m=2,10n=3,则103m+2n=( )
A. 17 B. 72 C. 12 D. 36
B 【解析】试题解析: 故选B.在边长为a的正方形中挖去一个边长为b的小正方形(a>b),再沿虚线剪开,如图(1),然后拼成一个梯形,如图(2),根据这两个图形的面积关系,表明下列式子成立的是( )
![]()
A. a2﹣b2=(a+b)(a﹣b) B. (a+b)2=a2+2ab+b2
C. (a﹣b)2=a2﹣2ab+b2 D. a2﹣b2=(a﹣b)2
查看答案下列因式分解不正确的是( )
A. x2﹣6x+9=(x﹣3)2 B. x2﹣y2=(x﹣y)2
C. x2﹣5x+6=(x﹣2)(x﹣3) D. 6x2+2x=2x(3x+1)
查看答案长方形的面积为
﹣6ab+2a,若它的一边长为2a,则它的周长为( ).
A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2
查看答案如果x2+( )x+25是完全平方式,横线处填( )
A. 5 B. 10 C. ±5 D. ±10
查看答案如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是( )
![]()
A. AC=BD B. ∠CAB=∠DBA
C. ∠C=∠D D. BC=AD
查看答案 试题属性- 题型:单选题
- 难度:简单
把四张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长和是_____cm.(用m或n的式子表示).
![]()
单项式﹣2xy5的系数是m,次数是n,则m﹣n=_____.
查看答案一列单项式﹣x2,3x3,﹣5x4,7x5.…,按此规律排列,则第9个单项式是_____.
查看答案在3,﹣4,6,﹣7这四个数中,任取两个数相乘,所得的积最大的是_____.
查看答案若a、b互为倒数,则(﹣ab)2017=_____.
查看答案x2+ax﹣y﹣(bx2﹣x+9y+3)的值与x的取值无关,则﹣a+b的值为( )
A. 0 B. ﹣1 C. ﹣2 D. 2
查看答案 试题属性- 题型:填空题
- 难度:困难
下列运算正确的是( )
A. ﹣a2b﹣2a2b=﹣3a2b B. 2a﹣a=2a
C. 3a2+2a2=5a4 D. 2a+b=2ab
A 【解析】根据合并同类项的法则,可知﹣a2b﹣2a2b=﹣3a2b,2a﹣a=a,3a2+2a2=5a2,2a+b不能计算,故只有A正确. 故选:A.多项式
的各项分别是( )
A.
B.
C.
D. ![]()
下列式子:x2+2,
,
,
,﹣5x,0中,整式的个数有( )
A. 3个 B. 4个 C. 5个 D. 6个
查看答案我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为( )
A. 0.21×108 B. 2.1×106 C. 2.1×107 D. 21×106
查看答案两个数的和为正数,那么这两个数是( )
A. 正数 B. 负数
C. 至少有一个为正数 D. 一正一负
查看答案若|x|=4,|y|=7,且x+y>0,那么x﹣y的值是( )
A. 3或11 B. 3或﹣11 C. ﹣3或11 D. ﹣3或﹣11
查看答案 试题属性- 题型:单选题
- 难度:中等
出租车司机老李某天上午营运全是在东西走向的胜利路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:公里 )如下:
+8,+4,﹣10,﹣8,+6,﹣2,﹣5,﹣7,+4,+6,﹣8,﹣9
(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?
(2)将最后一名乘客送 到目的地时,老王距上午出发点多远?
(3)若汽车耗油量为0.4升/公里,这天上午老王耗油多少升?
(1)5;(2)21;(3)30.8. 【解析】试题分析:(1)根据题意求和即可; (2)根据题意求和即可; (3)求出所有路程的绝对值的和,再乘以每公里耗油量即可. 试题解析:(1)∵+8+4-10-8+6=0 ∴将第五名乘客送到目的地时,老王刚好回到上午出发点. (2)将最后一名乘客送到目的地时,老王距上午出发点的距离为:+8+4-10-8+6-2-5-7+...先化简,再求值.
(1)
,其中x=﹣
,y=﹣1.
(2)﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.
查看答案若有理数m、n在数轴上的位置如图所示,请化简:|m+n|+|m﹣n|﹣|n|.
![]()
在数轴上有三个点A,B,C,分别表示﹣3,0,2.按下列要求回答:
(1)点A向右移动6个单位后,三个点表示的数谁最大?
(2)点C向左移动3个单位后,这时点B表示的数比点C表示的数大多少?
(3)怎样移动点A,B,C中的两个点,才能使三个点所表示的数相同?有几种办法?分别写出来.
查看答案计算
(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);
(2)
;
(3)
;
(4)
.
把下列各数填入相应的大括号内:
,
,﹣0.01,
,7,1,﹣(﹣4),+(﹣1)
正数集合{ …}
负数集合{ …}
非负整数集合{ …}
分数集合{ …}.
查看答案 试题属性- 题型:解答题
- 难度:困难
单项式﹣2xy5的系数是m,次数是n,则m﹣n=_____.
-8. 【解析】根据单项式的概念,可知系数为m=-2,次数为n=6,因此可得m-n=-2-6=-8. 故答案为:-8.一列单项式﹣x2,3x3,﹣5x4,7x5.…,按此规律排列,则第9个单项式是_____.
查看答案在3,﹣4,6,﹣7这四个数中,任取两个数相乘,所得的积最大的是_____.
查看答案若a、b互为倒数,则(﹣ab)2017=_____.
查看答案x2+ax﹣y﹣(bx2﹣x+9y+3)的值与x的取值无关,则﹣a+b的值为( )
A. 0 B. ﹣1 C. ﹣2 D. 2
查看答案一个多项式与x2﹣3x+2的和是3x﹣1,则这个多项式为( )
A. ﹣x2+6x+1 B. ﹣x2+1 C. ﹣x2+6x﹣3 D. ﹣x2﹣6x+1
查看答案 试题属性- 题型:填空题
- 难度:中等
在由小正方形组成的L形的图形中,用三种不同的方法添画一个小正方形,使它成为轴对称图形.
![]()
如图①,图②,图③,图④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律摆.
![]()
(1)第5个“广”字中的棋子个数是 .
(2)第n个“广”字需要多少枚棋子?
查看答案如图,点D在AB上,点E在AC上,AB=AC,AD=AE.试说明∠B=∠C.
![]()
先化简再求值:(a-2)2-(a-1)·(a+1)+5a,其中a=-2.
查看答案小聪和小明沿同一条路同时从学校出发到某图书馆查阅资料,学校与图书馆的路程是4 km,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达图书馆,图中折线O—A—B—C和线段OD分别表示两人离学校的路程s(km)与所经过的时间t(min)之间的关系,请根据图象回答:下列四个结论
![]()
①小聪在图书馆查阅资料的时间为15 min;
②小聪返回学校的速度为
km/min;
③小明离开学校的路程s(km)与所经过的时间t(min)之间的关系式是s=
t;
④当小聪与小明迎面相遇时,他们离学校的路程是
km.
其中正确结论的序号是_____.
查看答案如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边BC上A1处,折痕为CD,则∠A1DB=__度.
![]()
- 题型:解答题
- 难度:简单
如图,
,
,
交于
,
,
,
,则
长为( ).
![]()
A.
B.
C.
D. ![]()
将抛物线
先向左平移一个单位,再向上平移一个单位,两次平移后得到的抛物线解析式为( ).
A.
B.
C.
D. ![]()
若二次函数
的图象经过点
,则
的值为( ).
A.
B.
C.
D. ![]()
若
,则
的值等于( ).
A.
B.
C.
D. ![]()
【问题提出】
学习了三角形全等的判定方法(即“SSS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.
【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 ,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是钝角,请你证明:△ABC≌△DEF(提示:过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H).
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B,∠E都是锐角,请你利用图③,在图③中用尺规作出△DEF,使△DEF和△ABC不全等.
![]()
如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.
(1)求证:AC=CD;
(2)若AC=AE,求∠DEC的度数.
![]()
- 题型:单选题
- 难度:简单