题目内容

如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE还成立吗?请说明理由.
考点:全等三角形的判定与性质,等腰直角三角形,正方形的性质,旋转的性质
专题:证明题
分析:根据旋转角求出∠FAD=∠EAB,然后利用“边角边”证明△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF.
解答:解:DF=BE还成立;
理由:∵正方形ABCD绕点A逆时针旋转一定角度α,
∴∠FAD=∠EAB,
在△ADF与△ABE中
AF=AE
∠FAD=∠EAB
AD=AB

∴△ADF≌△ABE(SAS)
∴DF=BE.
点评:本题考查了旋转的性质,正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记各性质求出三角形全等是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网