题目内容

已知a2+4a+1=0,且
a4+ma2+13a3+ma2+3a
=5
,则m=
 
分析:由a2+4a+1=0,得a2=-4a-1,代入所求的式子化简即可.
解答:解:∵a2+4a+1=0,∴a2=-4a-1,
a4+ma2+1
3a3+ma2+3a
=
(-4a-1)2+ma2+1
3a(-4a-1)+ma2+3a

=
(16+m)a2+8a+2
(m-12)a2

=
(16+m)a2+8a+2
(m-12)(-4a-1)

=
(16+m)(-4a-1)+8a+2
(m-12)(-4a-1)
=5,
∴(16+m)(-4a-1)+8a+2=5(m-12)(-4a-1),
原式可化为(16+m)(-4a-1)-5(m-12)(-4a-1)=-8a-2,
即[(16+m)-5(m-12)](-4a-1)=-8a-2,
∵a≠0,
∴(16+m)-5(m-12)=2,
解得m=
37
2

故答案为
37
2
点评:解题关键是两次用到了整体代入的思想,它在解题中起到了降幂,从而化难为易的作用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网