题目内容
已知a2+4a+1=0,且| a4+ma2+1 | 3a3+ma2+3a |
分析:由a2+4a+1=0,得a2=-4a-1,代入所求的式子化简即可.
解答:解:∵a2+4a+1=0,∴a2=-4a-1,
=
=
=
=
=5,
∴(16+m)(-4a-1)+8a+2=5(m-12)(-4a-1),
原式可化为(16+m)(-4a-1)-5(m-12)(-4a-1)=-8a-2,
即[(16+m)-5(m-12)](-4a-1)=-8a-2,
∵a≠0,
∴(16+m)-5(m-12)=2,
解得m=
.
故答案为
.
| a4+ma2+1 |
| 3a3+ma2+3a |
| (-4a-1)2+ma2+1 |
| 3a(-4a-1)+ma2+3a |
=
| (16+m)a2+8a+2 |
| (m-12)a2 |
=
| (16+m)a2+8a+2 |
| (m-12)(-4a-1) |
=
| (16+m)(-4a-1)+8a+2 |
| (m-12)(-4a-1) |
∴(16+m)(-4a-1)+8a+2=5(m-12)(-4a-1),
原式可化为(16+m)(-4a-1)-5(m-12)(-4a-1)=-8a-2,
即[(16+m)-5(m-12)](-4a-1)=-8a-2,
∵a≠0,
∴(16+m)-5(m-12)=2,
解得m=
| 37 |
| 2 |
故答案为
| 37 |
| 2 |
点评:解题关键是两次用到了整体代入的思想,它在解题中起到了降幂,从而化难为易的作用.
练习册系列答案
相关题目