题目内容

精英家教网已知如图:直角梯形ABCD中,AD∥BC,∠BAD=90°,BC=CD=26,sinC=
1213
,求:梯形ABCD的面积.
分析:作DE⊥BC,利用正弦函数和余弦函数的定义,求出CE和DE的值,再求出EB的值,根据梯形的面积公式计算即可.
解答:精英家教网解:作DE⊥BC,垂足为E.
∵CD=26,sinC=
12
13

DE
CD
=
12
13

DE
26
=
12
13

∴DE=24.
根据勾股定理,CE=
262-242
=10.
BE=26-10=16.
即AD=16,
在梯形ABCD中,
S梯形ABCD=
1
2
(AD+BC)•24=
1
2
×(16+26)×24=42×12=504.
点评:此题结合梯形的面积,考查了三角函数的定义,构造直角三角形,创设三角函数适用的条件是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网