题目内容

精英家教网如图,梯形ABCD中,AB∥CD,对角线AC、BD相交于O,下面四个结论:
①△AOD∽△BOC;
②S△DOC:S△BOA=DC:AB;
③△AOB∽△COD;
④S△AOD=S△BOC,其中结论始终正确的序号是
 
分析:根据相似三角形的判定及性质作答.
解答:解:∵AB∥CD,
∴∠OAB=∠OCD,∠OBA=∠ODC,
△AOB∽△COD,∴③正确;
∴S△DOC:S△BOA=(DC:AB)2,∴②错误;
设梯形ABCD的高为h,则S△ABD=
1
2
•AB•h,S△ABC=
1
2
•AB•h,
∴S△ABC=S△ABD
∴S△AOD=S△BOC,∴④正确;
在△AOD与△BOC中,只有∠AOD=∠BOC,再找不到任何一对角相等,也不能说明夹此角的两边对应成比例,故①错误.
故结论始终正确的序号是③④.
点评:本题主要考查了相似三角形的判定及性质.
有两组角对应相等的两个三角形相似.
相似三角形的面积比等于相似比的平方.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网