ÌâÄ¿ÄÚÈÝ
ÒÑÖªÖ±Ïßy=2x+4·Ö±ðÓëxÖá¡¢yÖá½»ÓÚA£¬B£¬ÓëË«ÇúÏßy=
ÔÚµÚÒ»ÏóÏÞ½»ÓÚC£¨1£¬m£©£®
£¨1£©ÇóµãB¡¢µãCµÄ×ø±ê¼°kµÄÖµ£»
£¨2£©ÎÊÔÚË«ÇúÏßy=
ÉÏÇÒÔÚÖ±Ïßy=2x+4µÄÏ·½£¬ÊÇ·ñ´æÔÚµãM£¬Ê¹¡÷MABµÃÃæ»ýµÈÓÚ¡÷ABOµÄÃæ»ýµÄ2±¶£¿Èô´æÔÚ£¬Çó³öMµãµÄ×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©µãPÊÇË«ÇúÏßy=
µÚÒ»ÏóÏÞÉϵ͝µã£¬QÊÇÖ±Ïßy=2x+4Éϵ͝µã£¬Èô¡÷BPQÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£®
| k |
| x |
£¨1£©ÇóµãB¡¢µãCµÄ×ø±ê¼°kµÄÖµ£»
£¨2£©ÎÊÔÚË«ÇúÏßy=
| k |
| x |
£¨3£©µãPÊÇË«ÇúÏßy=
| k |
| x |
¿¼µã£º·´±ÈÀýº¯Êý×ÛºÏÌâ
רÌ⣺
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉÖªBµãµÄ×Ý×ø±êΪ4£¬CµãµÄºá×ø±êΪ1£¬·Ö±ð´úÈëÖ±Ïß·½³Ì¿ÉÇóµÃÁ½µãµÄ×ø±ê£¬ÔÙ°ÑCµã×ø±ê´úÈëË«ÇúÏß½âÎöʽ¿ÉÇóµÃkµÄÖµ£»
£¨2£©¡÷MABºÍ¡÷ABOÖÐABΪµ×£¬Ö»Òª¸ßÂú×ã2±¶¹ØÏµ¼´¿É£¬¹ýO×÷³ö¡÷ABOµÄAB±ßÉϵĸߣ¬ÀûÓöԳÆÐÔ£¬×÷³öD¹ØÓÚOµãµÄ¶Ô³ÆµãE£¬¹ýEºÍABƽÐеÄÖ±ÏßÓëË«ÇúÏߵĽ»µã¼´ÎªËùÇóµÄMµã£¬ÀûÓÃÇó½»µã×ø±êµÄ·½·¨¿É½â³öMµÄ×ø±ê£»
£¨3£©µ±¡ÏPBQΪֱ½Çʱ£¬¹ýµãBÇÒ´¹Ö±ABµÄÖ±ÏßÓëË«ÇúÏߵĽ»µã¼´Âú×ãÌâÒ⣬µ±¡ÏPQBΪֱ½Çʱ£¬Ôò¹ýBµÄÖ±ÏßÓëÖ±ÏßABµÄ¼Ð½ÇΪ45¡ã¼´¿É£¬Çó³öÏàÓ¦Ö±Ïß·½³Ì£¬ÁªÁ¢·½³Ì×éÇó½â¼´¿É£®
£¨2£©¡÷MABºÍ¡÷ABOÖÐABΪµ×£¬Ö»Òª¸ßÂú×ã2±¶¹ØÏµ¼´¿É£¬¹ýO×÷³ö¡÷ABOµÄAB±ßÉϵĸߣ¬ÀûÓöԳÆÐÔ£¬×÷³öD¹ØÓÚOµãµÄ¶Ô³ÆµãE£¬¹ýEºÍABƽÐеÄÖ±ÏßÓëË«ÇúÏߵĽ»µã¼´ÎªËùÇóµÄMµã£¬ÀûÓÃÇó½»µã×ø±êµÄ·½·¨¿É½â³öMµÄ×ø±ê£»
£¨3£©µ±¡ÏPBQΪֱ½Çʱ£¬¹ýµãBÇÒ´¹Ö±ABµÄÖ±ÏßÓëË«ÇúÏߵĽ»µã¼´Âú×ãÌâÒ⣬µ±¡ÏPQBΪֱ½Çʱ£¬Ôò¹ýBµÄÖ±ÏßÓëÖ±ÏßABµÄ¼Ð½ÇΪ45¡ã¼´¿É£¬Çó³öÏàÓ¦Ö±Ïß·½³Ì£¬ÁªÁ¢·½³Ì×éÇó½â¼´¿É£®
½â´ð£º½â£º£¨1£©ÔÚy=2x+4ÖУ¬Áîx=0£¬½âµÃ£ºy=4£¬
ÔòBµÄ×ø±êÊÇ£¨0£¬4£©£¬
Áîx=1£¬½âµÃ£ºy=6£¬
ÔòCµÄ×ø±êÊÇ£¨1£¬6£©£¬
°Ñ£¨1£¬6£©´úÈëy=
ÖУ¬µÃ£ºk=6£»
£¨2£©ÔÚy=2x+4ÖУ¬Áîy=0£¬½âµÃ£ºx=-2£¬
ÔòAµÄ×ø±êÊÇ£¨-2£¬0£©£®
Èçͼ1£¬¹ýO×÷OD¡ÍABÓÚµãD£¬ÔòÖ±ÏßODµÄ½âÎöʽÊÇy=-
x£¬

ͼ1
¸ù¾ÝÌâÒâµÃ£º
£¬
½âµÃ£º
£¬
ÔòDµÄ×ø±êÊÇ£¨-
£¬
£©£¬D¹ØÓÚOµÄ¶Ô³ÆµãÊÇE£¨
£¬-
£©£¬
¾¹ýEÇÒÆ½ÐÐÓÚABµÄÖ±ÏߵĽâÎöʽÊÇ£ºy=2x+c£¬Ôò-
=
+c£¬
½âµÃ£ºc=-4£¬
Ôò½âÎöʽÊÇy=2x-4£®
¸ù¾ÝÌâÒâµÄ£º
£¬
½âµÃ£º
»ò
£¬
ÔòMµÄ×ø±êÊÇ£¨3£¬2£©»ò£¨-1£¬-6£©£»
£¨3£©µ±¡ÏPBQ=90¡ãʱ£¬ÔòÓÐBP¡ÍAB£¬
Èçͼ2£¬¹ýµãB×÷BP¡ÍAB£¬½»Ë«ÇúÏßÓÚµãP£¬

´ËʱÔÚÖ±ÏßABÉÏ´æÔÚÂú×ãÌõ¼þµÄQµã£¬
´ËʱֱÏßBP·½³ÌΪ£ºy=-
x+4£¬
ÁªÁ¢Ë«ÇúÏß·½³ÌµÃ£º
£¬
½âµÃ£º
»ò
£¬¼´´ËʱPµãµÄ×ø±êΪ£¨2£¬3£©»ò£¨1£¬6£©£»
µ±¡ÏBQP=90¡ãʱ£¬Èçͼ3£¬¹ýBµã×÷Ö±ÏßBP£¬Ê¹Ö±ÏßBPÓëÖ±ÏßABµÄ¼Ð½ÇΪ45¡ã£¬½»Ë«ÇúÏßÓÚµãP£¬½»xÖáÓÚµãD£¬´ËʱÔÚÖ±ÏßABÉÏ´æÔÚÂú×ãÌõ¼þµÄQµã£¬

Ôò¡Ï1=¡Ï2+¡Ï3=¡Ï2+45¡ã£¬
ËùÒÔtan¡Ï1=tan£¨¡Ï2+45¡ã£©=
£¬
ÓÖtan¡Ï1=
=
=2£¬ËùÒÔ
=2£¬
½âµÃtan¡Ï1=
£¬ËùÒÔÖ±ÏßBPµÄ·½³ÌΪ£ºy=
x+4£¬
ÁªÁ¢Ë«ÇúÏß·½³ÌµÃ£º
£¬
½âµÃ£º
»ò
£¨ÒòΪPµãÔÚµÚÒ»ÏóÏÞ£¬¹ÊÉáÈ¥£©£¬
´ËʱPµãµÄ×ø±êΪ£¨3
-6£¬
+2£©£»
µ±¡ÏBPQ=90¡ãʱ£¬Í¬Àí¿ÉÇóµÃPµã×ø±êÈÔΪ£¨3
-6£¬
+2£©£»
×ÛÉÏ¿ÉÖªÂú×ãÌõ¼þµÄPµãµÄ×ø±êΪ£º£¨2£¬3£©»ò£¨1£¬6£©»ò£¨3
-6£¬
+2£©£®
ÔòBµÄ×ø±êÊÇ£¨0£¬4£©£¬
Áîx=1£¬½âµÃ£ºy=6£¬
ÔòCµÄ×ø±êÊÇ£¨1£¬6£©£¬
°Ñ£¨1£¬6£©´úÈëy=
| k |
| x |
£¨2£©ÔÚy=2x+4ÖУ¬Áîy=0£¬½âµÃ£ºx=-2£¬
ÔòAµÄ×ø±êÊÇ£¨-2£¬0£©£®
Èçͼ1£¬¹ýO×÷OD¡ÍABÓÚµãD£¬ÔòÖ±ÏßODµÄ½âÎöʽÊÇy=-
| 1 |
| 2 |
ͼ1
¸ù¾ÝÌâÒâµÃ£º
|
½âµÃ£º
|
ÔòDµÄ×ø±êÊÇ£¨-
| 8 |
| 5 |
| 4 |
| 5 |
| 8 |
| 5 |
| 4 |
| 5 |
¾¹ýEÇÒÆ½ÐÐÓÚABµÄÖ±ÏߵĽâÎöʽÊÇ£ºy=2x+c£¬Ôò-
| 4 |
| 5 |
| 16 |
| 5 |
½âµÃ£ºc=-4£¬
Ôò½âÎöʽÊÇy=2x-4£®
¸ù¾ÝÌâÒâµÄ£º
|
½âµÃ£º
|
|
ÔòMµÄ×ø±êÊÇ£¨3£¬2£©»ò£¨-1£¬-6£©£»
£¨3£©µ±¡ÏPBQ=90¡ãʱ£¬ÔòÓÐBP¡ÍAB£¬
Èçͼ2£¬¹ýµãB×÷BP¡ÍAB£¬½»Ë«ÇúÏßÓÚµãP£¬
´ËʱÔÚÖ±ÏßABÉÏ´æÔÚÂú×ãÌõ¼þµÄQµã£¬
´ËʱֱÏßBP·½³ÌΪ£ºy=-
| 1 |
| 2 |
ÁªÁ¢Ë«ÇúÏß·½³ÌµÃ£º
|
½âµÃ£º
|
|
µ±¡ÏBQP=90¡ãʱ£¬Èçͼ3£¬¹ýBµã×÷Ö±ÏßBP£¬Ê¹Ö±ÏßBPÓëÖ±ÏßABµÄ¼Ð½ÇΪ45¡ã£¬½»Ë«ÇúÏßÓÚµãP£¬½»xÖáÓÚµãD£¬´ËʱÔÚÖ±ÏßABÉÏ´æÔÚÂú×ãÌõ¼þµÄQµã£¬
Ôò¡Ï1=¡Ï2+¡Ï3=¡Ï2+45¡ã£¬
ËùÒÔtan¡Ï1=tan£¨¡Ï2+45¡ã£©=
| 1+tan¡Ï2 |
| 1-tan¡Ï2 |
ÓÖtan¡Ï1=
| OB |
| OA |
| 4 |
| 2 |
| 1+tan¡Ï2 |
| 1-tan¡Ï2 |
½âµÃtan¡Ï1=
| 1 |
| 3 |
| 1 |
| 3 |
ÁªÁ¢Ë«ÇúÏß·½³ÌµÃ£º
|
½âµÃ£º
|
|
´ËʱPµãµÄ×ø±êΪ£¨3
| 6 |
| 6 |
µ±¡ÏBPQ=90¡ãʱ£¬Í¬Àí¿ÉÇóµÃPµã×ø±êÈÔΪ£¨3
| 6 |
| 6 |
×ÛÉÏ¿ÉÖªÂú×ãÌõ¼þµÄPµãµÄ×ø±êΪ£º£¨2£¬3£©»ò£¨1£¬6£©»ò£¨3
| 6 |
| 6 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é·´±ÈÀýº¯ÊýÓëÒ»´Îº¯Êý×ÛºÏÓ¦Óã¬ÔÚµÚ£¨2£©¡¢£¨3£©ÖÐÈ·¶¨³öËùÇóµãµÄλÖÃÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Å×ÎïÏßy=-£¨x-2£©2+3µÄ¶¥µã×ø±êΪ£¨¡¡¡¡£©
| A¡¢£¨0£¬3£© |
| B¡¢£¨-2£¬3£© |
| C¡¢£¨0£¬1£© |
| D¡¢£¨2£¬3£© |
ÏÂÁÐ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
| A¡¢µ¹ÊýºÍËü±¾ÉíÏàµÈµÄÊý£¬Ö»ÓÐ1ºÍ-1 |
| B¡¢Ïà·´ÊýÓë±¾ÉíÏàµÈµÄÊýÖ»ÓÐ0 |
| C¡¢Á¢·½µÈÓÚËü±¾ÉíµÄÊýÖ»ÓÐ0¡¢1ºÍ-1 |
| D¡¢¾ø¶ÔÖµµÈÓÚ±¾ÉíµÄÊýÊÇÕýÊý |
¼ÆËã-£¨-3£©2µÄ½á¹ûÊÇ£¨¡¡¡¡£©
| A¡¢6 | B¡¢-6 | C¡¢9 | D¡¢-9 |