题目内容
观察下列等式:
=1-
,
=
-
,
=
-
,将以上三个等式两边分别相加得:
+
+
=1-
+
-
+
-
(1)猜想并写出:
=
-
-
.
+
+…+
=
;
(2)探究并计算:
+
+
+…+
.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
(1)猜想并写出:
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2013×2014 |
| 2013 |
| 2014 |
| 2013 |
| 2014 |
(2)探究并计算:
| 1 |
| 2×4 |
| 1 |
| 4×6 |
| 1 |
| 6×8 |
| 1 |
| 2012×2014 |
分析:(1)观察一系列等式得到拆项规律,写出结论;利用得出的规律化简所求,计算即可得到结果;
(2)根据得出的规律,将原式变形,计算即可得到结果.
(2)根据得出的规律,将原式变形,计算即可得到结果.
解答:解:(1)根据题意得:
=
-
;原式=1-
+
-
+…+
-
=1-
=
;
(2)原式=
×(
-
+
-
+…+
-
)=
×(
-
)=
.
故答案为:(1)
-
;
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2013 |
| 1 |
| 2014 |
| 1 |
| 2014 |
| 2013 |
| 2014 |
(2)原式=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 6 |
| 1 |
| 2012 |
| 1 |
| 2014 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2014 |
| 503 |
| 2014 |
故答案为:(1)
| 1 |
| n |
| 1 |
| n+1 |
| 2013 |
| 2014 |
点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目