题目内容
【题目】如图,已知等边
和等边
,点
在
的延长线上,
的延长线交
于点M,连
,若
,则
( )
![]()
A.
B.
C.
D.![]()
【答案】A
【解析】
根据等腰三角形的性质得到AB=BC,∠ABP=∠CBE=60°,PB=PE,证得△APB≌△CEB (SAS),根据全等三角形的性质得到∠APB=∠CEB,于是得到∠PME=∠PBE=60゜,作BN⊥AM于N,BF⊥ME于F,通过△BNP≌△BFE(AAS),得到BN=BF,根据角平分线的性质得到BM平分∠AME,求得∠AMB=
∠AME=
×120°=60°,根据三角形的内角和即可得到结论.
∵等边△ABC和等边△BPE,
![]()
∴AB=BC,∠ABP=∠CBE=60°,PB=PE,
在△APB和△CEB中,
,
∴△APB≌△CEB (SAS),
∴∠APB=∠CEB,
∵∠MCP=∠BCE,
∴∠PME=∠PBE=60゜,
作BN⊥AM于N,BF⊥ME于F,
∵△APB≌△CEB,
∴BP=BE,∠BPN=∠FEB,
在△BNP和△BFE中,
,
∴△BNP≌△BFE(AAS),
∴BN=BF,
∴BM平分∠AME,
∴∠AMB=
∠AME=
×120°=60°,
∵∠ABM=40°,
∴∠BAP=80°,
∴∠APB=180°-∠ABP-∠BAP=40°.
故选:A.
练习册系列答案
相关题目