题目内容

二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中,正确的是(  )

A.abc<0 B.a+c<b C.b>2a D.4a>2b﹣c

 

 

C

 

【解析】

由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及图象经过的点的情况进行推理,进而对所得结论进行判断.

【解析】
A、∵图象开口向下,∴a<0,∵与y轴交于正半轴,∴c>0,∵对称轴在y轴左侧,﹣<0,∴b<0,∴abc>0,故本选项错误;

B、∵当x=﹣1时,对应的函数值y>0,即a﹣b+c>0,∴a+c>b,故本选项错误;

C、∵抛物线的对称轴为直线x=﹣>﹣1,又a<0,∴b>2a,故本选项正确;

D、∵当x=﹣2时,对应的函数值y<0,即4a﹣2b+c<0,∴4a<2b﹣c,故本选项错误.

故选C.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网