题目内容

9.一个盒中装着大小、外形一模一样的x颗白色弹珠和12颗黑色弹珠,已知从盒中随机取出一颗弹珠,取得白色弹珠的概率是$\frac{1}{3}$,现保持盒中原来的白色和黑色弹珠数量不变,再往盒中放进18颗同样的白色弹珠,接下来从盒中随机取出一颗弹珠,则取得白色弹珠的概率是$\frac{2}{3}$.

分析 根据概率公式得到得$\frac{x}{x+12}$=$\frac{1}{3}$,解得x=6,然后再利用概率公式计算再往盒中放进18颗同样的白色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率.

解答 解:根据题意得$\frac{x}{x+12}$=$\frac{1}{3}$,解得x=6,
再往盒中放进18颗同样的白色弹珠,接下来从盒中随机取出一颗弹珠,则取得白色弹珠的概率=$\frac{6+18}{6+12+18}$=$\frac{2}{3}$.
故答案为$\frac{2}{3}$.

点评 本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.解决本题的关键是理解概率公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网