题目内容
计算:﹣()﹣1+﹣(π﹣3.14)0+|2﹣4|.
如图,矩形和,.
画出矩形绕点逆时针旋转后的矩形,并写出的坐标为________,点运动到点 所经过的路径的长为________;
若点的坐标为,则点的坐标为________,请画一条直线平分矩形与组成图形的面积(保留必要的画图痕迹).
如图,在平面直角坐标系内,点O为坐标原点,点A在x轴负半轴上,点B、C分别在x轴、y轴正半轴上,且OB=2OA,OB?OC=OC?OA=2.
(1)求点C的坐标;
(2)点P从点A出发以每秒1个单位的速度沿AB向点B匀速运动,同时点Q从点B出发以每秒3个单位的速度沿BA向终点A匀速运动,当点Q到达终点A时,点P、Q均停止运动,设点P运动的时间为t(t>0)秒,线段PQ的长度为y,用含t的式子表示y,并写出相应的t的范围;
(3)在(2)的条件下,过点P作x轴的垂线PM,PM=PQ,是否存在t值使点O为PQ中点? 若存在求t值并求出此时△CMQ的面积.
点P在数轴上运动,它所对应的数值为a,如图,当点P从点A运动到点B,则代数式的最大值为( )
A. 5 B. a+1 C. 7 D. a+4
如图,在南北方向的海岸线MN上,有A,B两艘巡逻船,现均收到故障船C的求救信号.已知A,B两船相距100(+1)海里,船C在船A的北偏东60°方向上,船C在船B的东南方向上,MN上有一观测点D,测得船C正好在观测点D的南偏东75°方向上.
(1)分别求出A与C,A与D间的距离AC和AD(如果运算结果有根号,请保留根号).
(2)已知距观测点D处100海里范围内有暗礁,若巡逻船A沿直线AC去营救船C,在去营救的途中有无触礁的危险?(参考数据:≈1.41,≈1.73)
已知二次函数y=ax2+bx(a≠0)的最小值是﹣3,若关于x的一元二次方程ax2+bx+c=0有实数根,则c的最大值是_____.
已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为( )
A. 3或6 B. 1或6 C. 1或3 D. 4或6
比较大小: _____;(填“>”或“<”).
先化简,再求值. x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y= .