题目内容
21、某产品每件的成本是120元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系式y=-x+200,为获得最大利润,每件产品的销售价应定为多少元?此时每日的销售利润是多少?
分析:利润=销售量×单价-成本=销售量×每件利润.
解答:解:设日销售利润是W元,依题意得:W=xy-120y=x(-x+200)-120(-x+200)=-x2+320x-2400
∴W=-x2+320x-2400,
配方得W=-(x-160)2+1600
∵a=-1<0,
∴W有最大值.
当x=160时,可获得最大利润,且最大利润是1600元.
∴W=-x2+320x-2400,
配方得W=-(x-160)2+1600
∵a=-1<0,
∴W有最大值.
当x=160时,可获得最大利润,且最大利润是1600元.
点评:运用二次函数性质求最值常用配方法或公式法.
练习册系列答案
相关题目
某产品每件的成本是120元,为了解市场规律,试销阶段按两种方法进行销售,结果如下:
方案甲:保持每件150元的售价不变,此时日销售量为50件;
方案乙:不断地调整售价,此时发现日销售量y(件)是售价x(元)的一次函数,且前三天的销售情况如下表:
(1)如果方案乙中的第四天、第五天售价均为180元,那么前五天中,哪种方案的销售总利润大?
(2)分析两种方案,为获得最大日销售利润,每件产品的售价应写为多少元此时,最大日销售利润S是多少?(注:销售利润=销售额-成本额,销售额=售价×销售量).
方案甲:保持每件150元的售价不变,此时日销售量为50件;
| x (元) | 130 | 150 | 160 |
| y (件) | 70 | 50 | 40 |
(1)如果方案乙中的第四天、第五天售价均为180元,那么前五天中,哪种方案的销售总利润大?
(2)分析两种方案,为获得最大日销售利润,每件产品的售价应写为多少元此时,最大日销售利润S是多少?(注:销售利润=销售额-成本额,销售额=售价×销售量).