题目内容
某产品每件的成本是120元,试销阶段,每件产品的销售价x(元)与产品的日销售量y(台)之间的函数关系如表:
并且日销售量y是每件售价x的一次函数.
(1)求y与x之间的函数关系式;
(2)为获得最大利润,每件产品的销售价应定为多少元?此时每日销售的利润是多少?
| x(元) | 130 | 150 | 165 |
| y(台) | 70 | 50 | 35 |
(1)求y与x之间的函数关系式;
(2)为获得最大利润,每件产品的销售价应定为多少元?此时每日销售的利润是多少?
分析:(1)利用表格中数据代入一函数解析式,进而得出y与x的关系式;
(2)利用利润=销量×每件利润,进而利用配方法求出函数最值.
(2)利用利润=销量×每件利润,进而利用配方法求出函数最值.
解答:解:(1)设y=kx+b,将(130,70),(150,50)代入得:
即
,
解得:
所以y与x之间的函数关系式为:y=-x+200;
(2)设日销售利润为S,由题意得:
S=(x-120)y
=-x2+320x-24000
=-(x-160)2+1600,
∴售价为160元/件时,获最大利润1600元.
即
|
解得:
|
所以y与x之间的函数关系式为:y=-x+200;
(2)设日销售利润为S,由题意得:
S=(x-120)y
=-x2+320x-24000
=-(x-160)2+1600,
∴售价为160元/件时,获最大利润1600元.
点评:此题主要考查了二次函数的应用,利用配方法求出函数最值是解题关键.
练习册系列答案
相关题目
某产品每件的成本是120元,为了解市场规律,试销阶段按两种方法进行销售,结果如下:
方案甲:保持每件150元的售价不变,此时日销售量为50件;
方案乙:不断地调整售价,此时发现日销售量y(件)是售价x(元)的一次函数,且前三天的销售情况如下表:
(1)如果方案乙中的第四天、第五天售价均为180元,那么前五天中,哪种方案的销售总利润大?
(2)分析两种方案,为获得最大日销售利润,每件产品的售价应写为多少元此时,最大日销售利润S是多少?(注:销售利润=销售额-成本额,销售额=售价×销售量).
方案甲:保持每件150元的售价不变,此时日销售量为50件;
| x (元) | 130 | 150 | 160 |
| y (件) | 70 | 50 | 40 |
(1)如果方案乙中的第四天、第五天售价均为180元,那么前五天中,哪种方案的销售总利润大?
(2)分析两种方案,为获得最大日销售利润,每件产品的售价应写为多少元此时,最大日销售利润S是多少?(注:销售利润=销售额-成本额,销售额=售价×销售量).