题目内容
(1)底面的长AB=
50-2x
50-2x
cm,宽BC=30-2x
30-2x
cm(用含x的代数式表示)(2)当做成盒子的底面积为300cm2时,求该盒子的容积.
(3)该盒子的侧面积S是否存在最大的情况?若存在,求出x的值及最大值是多少?若不存在,说明理由.
分析:(1)利用长方形的长与宽以及在铁片的四个角截去四个相同的小正方形,得出AB与BC的长即可;
(2)利用(1)中长与宽以及盒子的底面积为300cm2时得出x的值,即可的求出盒子的容积;
(3)利用盒子侧面积为:S=2x(50-2x)+2x(30-2x)进而利用配方法求出最值即可.
(2)利用(1)中长与宽以及盒子的底面积为300cm2时得出x的值,即可的求出盒子的容积;
(3)利用盒子侧面积为:S=2x(50-2x)+2x(30-2x)进而利用配方法求出最值即可.
解答:解:(1)∵用一块长为50cm、宽为30cm的长方形铁片制作一个无盖的盒子,在铁片的四个角截去四个相同的小正方形,
设小正方形的边长为xcm,
∴底面的长AB=(50-2x)cm,宽BC=(30-2x)cm,
故答案为:50-2x,30-2x;
(2)依题意,得:
(50-2x)(30-2x)=300
整理,得:x2-40x+300=0
解得:x1=10,x2=30(不符合题意,舍去)
当x1=10时,盒子容积=(50-20)(30-20)×10=3000(cm3);
(3)盒子的侧面积为:
S=2x(50-2x)+2x(30-2x)
=100x-4x2+60x-4x2
=-8x2+160x=-8(x2-20x)
=-8[(x-10)2-100]
=-8(x-10)2+800
∵-8(x-10)2≤0,
∴-8(x-10)2+800≤800,
∴当x=10时,S有最大值,最大值为800.
设小正方形的边长为xcm,
∴底面的长AB=(50-2x)cm,宽BC=(30-2x)cm,
故答案为:50-2x,30-2x;
(2)依题意,得:
(50-2x)(30-2x)=300
整理,得:x2-40x+300=0
解得:x1=10,x2=30(不符合题意,舍去)
当x1=10时,盒子容积=(50-20)(30-20)×10=3000(cm3);
(3)盒子的侧面积为:
S=2x(50-2x)+2x(30-2x)
=100x-4x2+60x-4x2
=-8x2+160x=-8(x2-20x)
=-8[(x-10)2-100]
=-8(x-10)2+800
∵-8(x-10)2≤0,
∴-8(x-10)2+800≤800,
∴当x=10时,S有最大值,最大值为800.
点评:此题主要考查了一元二次方程的应用以及二次函数的应用,想象出立体图形的形状进而表示出侧面积是解题关键.
练习册系列答案
相关题目