题目内容

如图,AB为半圆O的直径,延长AB到点P,使BP=AB,PC切半圆O于点C,点D是上和点C不重合的一点,则∠CDB的度数为    度.
【答案】分析:连接OC,由切线的性质得OC⊥PC,于是易得Rt△OCP中,OC=OB=PB;利用30°所对的边等于斜边的一半,可得∠P=30°,于是得∠COP=60°,再由“同弧所对的圆周角等于它所对的圆心角的一半”得∠CDB=30度.
解答:解:连接OC,
∵PC切半圆O于点C,
∴OC⊥PC,
∴OC=OB=PB,
∴∠P=30°,即∠COP=60°,
∴∠CDB=∠COP=30°.
点评:本题考查了直角三角形中30°角的确定及圆周角与圆心角的关系,属综合性稍强的题目,学生由于应用中的某一类知识欠缺导致出现错误.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网