题目内容
【题目】如图,AB是⊙O的直径,点P在BA的延长线上,PA=AO,PD与⊙O相切于点D,BC⊥AB交PD的延长线于点C,若⊙O的半径为1,则BC的长是( )
![]()
A.1.5B.2C.
D.![]()
【答案】D
【解析】
连接OD,根据切线的性质求出∠ODP=90°,根据勾股定理求出PD,证明BC是⊙O的切线,根据切线长定理得出CD=BC,再根据勾股定理求出BC即可.
连接OD,如图所示
![]()
∵PC切⊙O于D
∴∠ODP=90°
∵⊙O的半径为1,PA=AO,AB是⊙O的直径
∴PO=1+1=2,PB=1+1+1=3,OD=1
∴由勾股定理得:PD=![]()
∵BC⊥AB,AB过O
∴BC切⊙O于B
∵PC切⊙O于D
∴CD=BC
设CD=CB=x
在Rt△PBC中,由勾股定理得:PC2=PB2+BC2
即![]()
解得:x=![]()
即BC=![]()
故选:D
练习册系列答案
相关题目
【题目】某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90≤x≤100,B等级:80≤x<90,C等级:60≤x<80,D等级:0≤x<60.该校随机抽取了一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.
等级 | 频数(人数) | 频率 |
A | a | 20% |
B | 16 | 40% |
C | b | m |
D | 4 | 10% |
请你根据统计图表提供的信息解答下列问题:
(1)上表中的a ,b= ,m= .
(2)本次调查共抽取了多少名学生?请补全条形图.
(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.
![]()