题目内容
如图,圆O是△ABC的外接圆,AB=AC,过点A作AP∥BC,交BO的延长线于点P.(1)求证:AP是圆O的切线;
(2)若圆O的半径R=5,BC=8,求线段AP的长.
【答案】分析:(1)由题意可知AE⊥BC且BE=CE,得出AE经过圆心O,只要证明AP⊥AE即可;
(2)可通过△APO∽△EBO及勾股定理求出AP的长.
解答:
(1)证明:过点A作AE⊥BC,交BC于点E,
∵AB=AC,
∴AE平分BC,
∴点O在AE上.(2分)
又∵AP∥BC,
∴AE⊥AP,
∴AP为圆O的切线.(4分)
(2)解:∵BE=
BC=4,
∴
,
又∵∠AOP=∠BOE,
∴△OBE∽△OPA,(6分)
∴
.
即
.
∴
.(8分)
点评:本题考查了切线的判定,先要证明AE经过圆心,再证明垂直即可.求AP的长,注意与已知线段相关的三角形联系,找准相似三角形.
(2)可通过△APO∽△EBO及勾股定理求出AP的长.
解答:
∵AB=AC,
∴AE平分BC,
∴点O在AE上.(2分)
又∵AP∥BC,
∴AE⊥AP,
∴AP为圆O的切线.(4分)
(2)解:∵BE=
∴
又∵∠AOP=∠BOE,
∴△OBE∽△OPA,(6分)
∴
即
∴
点评:本题考查了切线的判定,先要证明AE经过圆心,再证明垂直即可.求AP的长,注意与已知线段相关的三角形联系,找准相似三角形.
练习册系列答案
相关题目