题目内容
化简: =___________.
小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多倍,问她第一次在供销大厦买了几瓶酸奶?如果设她第一次在供销大厦买了x瓶酸奶,则可列方程为 .
方程 = 的解为 .
化简的结果是( )
A. B. C. D.
若代数式有意义,则的取值范围是___________.
已知实数、满足式子|﹣2|+(﹣)2=0,求的值.
如图,在Rt△ABO中,斜边AB=1,若OC∥BA,∠AOC=36°,则( )
A. 点B到AO的距离为sin54° B. 点B到AO的距离为tan36°
C. 点A到OC的距离为sin36°sin54° D. 点A到OC的距离为cos36°sin54°
如图,正三角形ABC的边长为3+.
(1)如图1,正方形EFPN的顶点E,F在边AB上,顶点N在边AC上,在正三角形ABC及其内部,以A为位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不要求写作法);
(2)求(1)中作出的正方形E′F′P′N′的边长;
(3)如图2,在正三角形ABC中放入正方形DEMN和正方形EFPN,使得DE,EF在边AB上,点P,N分别在边CB,CA上,求这两个正方形面积和的最大值和最小值,并说明理由.
如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )
A.1 B.2 C.3 D.4