题目内容
如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=( )
A. B. 2 C. 3 D. +2
当时,代数式与2x的值相等.
当a=-1时,求2(a+)(a-)-a(a-6)+6的值.
如图,已知△ABC是等边三角形,E,D,G分别在AB,BC,AC边上,且AE=BD=CG,连接AD,BG,CE,相交于F,M,N.
(1)求证:AD=CE;
(2)求∠DFC的度数:
(3)试判断△FMN的形状,并说明理由.
如图,两条笔直的公路,相交于点O,村庄C的村民在公路的旁边建三个加工厂A,B,D,已知AB=BC=CD=DA=5公里,村庄C到公路的距离为4公里,则村庄C到公路的距离是_____公里.
下列从左边到右边的变形,是因式分解的是( )
A. B.
C. D.
如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB,与y轴交于D点,∠CAO=90°-∠BDO.
(1)求证:AC=BC:
(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长;
(3)如图3,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,当H在FC上移动、点G在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.
(图3)
若a2+b2-2a-6b+10=0,则a+b=___________.
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.
(1)求平均每天销售量箱与销售价元/箱之间的函数关系式.
(2)当每箱苹果的销售价为多少元时,可以使获得的销售利润w最大?最大利润是多少?