题目内容

【题目】已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.

(1)若CE=1,求BC的长;
(2)求证:AM=DF+ME.

【答案】
(1)解:∵四边形ABCD是菱形,

∴AB∥CD,

∴∠1=∠ACD,

∵∠1=∠2,

∴∠ACD=∠2,

∴MC=MD,

∵ME⊥CD,

∴CD=2CE,

∵CE=1,

∴CD=2,

∴BC=CD=2;


(2)证明:如图,∵F为边BC的中点,

∴BF=CF= BC,

∴CF=CE,

在菱形ABCD中,AC平分∠BCD,

∴∠ACB=∠ACD,

在△CEM和△CFM中,

∴△CEM≌△CFM(SAS),

∴ME=MF,

延长AB交DF的延长线于点G,

∵AB∥CD,

∴∠G=∠2,

∵∠1=∠2,

∴∠1=∠G,

∴AM=MG,

在△CDF和△BGF中,

∴△CDF≌△BGF(AAS),

∴GF=DF,

由图形可知,GM=GF+MF,

∴AM=DF+ME.


【解析】(1)根据菱形和等腰三角形的性质,求出BC=CD;(2)根据菱形的性质得到△CEM≌△CFM、△CDF≌△BGF,根据全等三角形的对应边相等得到ME=MF、GF=DF,由图形可知,得到AM=DF+ME.
【考点精析】本题主要考查了菱形的性质的相关知识点,需要掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网