题目内容
如图, 是的平分线,点在上,且交于点.试说明: 平分.
如图,已知矩形纸片ABCD中,AB=1,剪去正方形ABEF,得到的矩形ECDF与矩形ABCD相似,则AD的长为_____.
平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(2,7) ,直线l经过A点且平行于x
轴,直线l上的动点C从A点出发以每秒4个单位的速度沿直线l运动.若在x轴上有两点D、E,
连接DB、OB,连接EC、OC,满足DB=OB,EC=OC,设点C运动时间t秒,
(1) 如图1,若动点C从A点出发向左运动,当t=1秒时,
①求线段BC的长和点E的坐标;
②求此时DE与AC的数量关系?
(2)探究:动点C在直线l运动,无论t取何值,是否都存在上述(1)②中的数量关系? 若存在,请证明;若不存在,请说明理由.
图1 图2
如果是一次函数,则的值是________________.
通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例.
原题:如图①,点分别在正方形的边上, ,连接,则,试说明理由.
(1)思路梳理
因为,所以把绕点逆时针旋转90°至,可使与 重合.因为,所以,点共线.
根据 ,易证 ,得.请证明.
(2)类比引申
如图②,四边形中, , ,点分别在边上, .若都不是直角,则当与满足等量关系时, 仍然成立,请证明.
(3)联想拓展
如图③,在中, ,点均在边上,且.猜想应满足的等量关系,并写出证明过程.
如图, 中, , 分别是上动点,且,当=_______时,才能使和全等.
如果等腰三角形的底角是50°,那么这个三角形的顶角的度数是___________
如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D, 其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,当a=时,△ABD是_______三角形;要使△ACB为等腰三角形,则a值为______
方程x(x-2)+x-2=0的解是( )
A. 2 B. -2,1 C. -1 D. 2,-1