题目内容

已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.
考点:全等三角形的判定与性质
专题:证明题
分析:由直角三角形ACD中,CF垂直于AD,利用同角的余角相等得到一对角相等,再由一对直角相等,AC=BC,利用AAS得到三角形ACD与三角形CBF全等,利用全等三角形的对应边相等得到CD=BF,由D为BC中点,得到CD=BD,等量代换即可得证.
解答:证明:∵Rt△ACD中,CE⊥AD,
∴∠BCF+∠F=90°,∠BCF+∠ADC=90°,
∴∠F=∠ADC,
在△ACD和△CBF中,
∠ACD=∠CBF=90°
∠F=∠ADC
AC=BC

∴△ACD≌△CBF(AAS),
∴CD=BF,
∵D为BC中点,
∴CD=BD,
∴BF=CD=BD=
1
2
BC=
1
2
AC,
则AC=2BF.
点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网