题目内容
考点:全等三角形的判定与性质
专题:证明题
分析:由直角三角形ACD中,CF垂直于AD,利用同角的余角相等得到一对角相等,再由一对直角相等,AC=BC,利用AAS得到三角形ACD与三角形CBF全等,利用全等三角形的对应边相等得到CD=BF,由D为BC中点,得到CD=BD,等量代换即可得证.
解答:证明:∵Rt△ACD中,CE⊥AD,
∴∠BCF+∠F=90°,∠BCF+∠ADC=90°,
∴∠F=∠ADC,
在△ACD和△CBF中,
,
∴△ACD≌△CBF(AAS),
∴CD=BF,
∵D为BC中点,
∴CD=BD,
∴BF=CD=BD=
BC=
AC,
则AC=2BF.
∴∠BCF+∠F=90°,∠BCF+∠ADC=90°,
∴∠F=∠ADC,
在△ACD和△CBF中,
|
∴△ACD≌△CBF(AAS),
∴CD=BF,
∵D为BC中点,
∴CD=BD,
∴BF=CD=BD=
| 1 |
| 2 |
| 1 |
| 2 |
则AC=2BF.
点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
练习册系列答案
相关题目