题目内容

1.如图,MN是⊙O的直径,MN=8,∠AMN=20°,点B为弧$\widehat{AN}$的中点,点P是直径MN上的一个动点,则PA+PB的最小值为4.

分析 过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,由对称的性质可知$\widehat{AN}$=$\widehat{A′N}$,再由圆周角定理可求出∠A′ON的度数,再由勾股定理即可求解.

解答 解:过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,
连接OB,OA′,AA′,
∵AA′关于直线MN对称,
∴$\widehat{AN}$=$\widehat{A′N}$,
∵∠AMN=20°,
∴∠A′ON=40°,∠BON=20°,
∴∠A′OB=60°,
∴△A′OB是等边三角形,
∴A′B=$\frac{1}{2}$MN=4,即PA+PB的最小值4.
故答案为:4.

点评 本题考查的是圆心角、弧、弦的关系及轴对称-最短路线问题,解答此题的关键是根据题意作出辅助线,构造出直角三角形,利用勾股定理求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网