题目内容
不等式组的解在数轴上表示为( )
A. B.
C. D.
如图,在平面直角坐标系xOy,已知二次函数y=﹣x2+bx的图象过点A(4,0),顶点为B,连接AB、BO.
(1)求二次函数的表达式;
(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;
(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E的坐标.
对于二次函数y=x2﹣2mx﹣3,下列结论错误的是( )
A. 它的图象与x轴有两个交点
B. 方程x2﹣2mx=3的两根之积为﹣3
C. 它的图象的对称轴在y轴的右侧
D. x<m时,y随x的增大而减小
某市今年中考理化实验操作考试,采用学生抽签方式决定自己的考试内容.规定每位考生必须在三个物理实验(用纸签A、B、C表示)和三个化学试验(用纸签D、E、F表示)中各抽取一个实验操作进行考试,小刚在看不到纸签的情况下,分别从中各随机抽取一个.用列表或画树状图的方法求小刚抽到物理实验B和化学实验F的概率.
分解因式:x2﹣3x=_____.
探索与计算:
在△ABC中,BE⊥AC于点E,CD⊥AB于点D,连接DE.
(1)如图1,若∠A=45°,AB=AC,BC=4,求DE的长.
(2)如图2,若∠A=60°,AB与AC不相等,BC=4,求DE的长.
猜想与证明:
(3)根据(1)(2)所求出的结果,猜想DE、BC以及∠A之间的数量关系,并证明.
拓展与应用:
(4)如图3,在△ABC中,AB=BC=5,AC=2,BE⊥AC于点E,CD⊥AB于点D,AF⊥BC于点F,求△DEF的周长.
如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为_______.
如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将△ADF绕点A顺时针旋转90°后,得到△ABQ,连接EQ,求证:
(1)EA是∠QED的平分线;
(2)EF2=BE2+DF2.
如图,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是 cm.