题目内容
2.分析 直接利用抛物线与x轴的交点问题求解.
解答 解:∵抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(-1,0)和B(2,0),
∴一元二次方程ax2+bx+c=0的解为x1=-1,x2=2.
故答案为x1=-1,x2=2.
点评 本题考查了抛物线与x轴的交点:从二次函数的交点式y=a(x-x1)(x-x2)(a,b,c是常数,a≠0)中能直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).
练习册系列答案
相关题目
12.a为有理数,下列说法中正确的是( )
| A. | -a一定是负数 | B. | -a2一定是负数 | C. | (-a)3一定是负数 | D. | |a|一定不是负数 |
13.
如图,小明作图如下:
(1)用量角器作∠MAN=36°;
(2)以A为圆心适当长为半径作圆弧,分别交AM,AN于B,C两点,连结BC;
(3)以B为圆心适当长为半径作圆弧,分别交AB,BC于E,F两点,再分别以E,F为圆心大于$\frac{1}{2}$EF长为半径作圆弧,两条圆弧交于点K,连结BK并延长交AC于点D.
若AD=a,则由以上作图可得AB为( )
(1)用量角器作∠MAN=36°;
(2)以A为圆心适当长为半径作圆弧,分别交AM,AN于B,C两点,连结BC;
(3)以B为圆心适当长为半径作圆弧,分别交AB,BC于E,F两点,再分别以E,F为圆心大于$\frac{1}{2}$EF长为半径作圆弧,两条圆弧交于点K,连结BK并延长交AC于点D.
若AD=a,则由以上作图可得AB为( )
| A. | $\frac{\sqrt{5}-1}{2}$a | B. | $\frac{3-\sqrt{5}}{2}$a | C. | $\frac{\sqrt{5}+1}{2}a$ | D. | $\frac{3+\sqrt{5}}{2}$a |
7.已知点A(-2,y1),B(-1,y2)在函数y=$\frac{3}{x}$的图象上,则y1与y2的大小关系是( )
| A. | y1>y2 | B. | y1<y2 | C. | y1=y2 | D. | 无法确定 |