题目内容

2.(1)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.
(2)列方程(组)或不等式(组)解应用题:
2015年的5月20日是第15个中国学生营养日,我市某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如表).
 信息
1、快餐成分:蛋白质、脂肪、碳水化合物和其他
2、快餐总质量为400克
3、碳水化合物质量是蛋白质质量的4倍
若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?

分析 (1)先根据相似三角形的判定得出△ABC相似与△AMN,再利用相似三角形的性质解答即可;
(2)设这份快餐含有x克的蛋白质,根据所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,列出不等式,求解即可.

解答 解:(1)在△ABC与△AMN中,
∠A=∠A,$\frac{AC}{AB}=\frac{30}{54}=\frac{5}{9},\frac{AM}{AN}=\frac{1}{1.8}=\frac{5}{9}$,
∴△ABC∽△AMN,
∴$\frac{AC}{BC}=\frac{AM}{MN}$,即$\frac{30}{45}=\frac{1}{MN}$,
解得:MN=1.5千米,
答:M、N两点之间的直线距离是1.5千米;
(2)设这份快餐含有x克的蛋白质,
根据题意可得:x+4x≤400×70%,
解不等式,得x≤56.
答:这份快餐最多含有56克的蛋白质.

点评 此题考查相似三角形和一元一次不等式的应用,关键是根据相似三角形的判定和性质解答问题,读懂题意,找出题目中的数量关系,列出不等式,本题的数量关系是所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网