题目内容

6.如图,在四边形ABCD中,对角线AC,BD交于点O,AC与BD互相垂直且平分,BD=6,AC=8,则四边形周长为20,面积为24.

分析 首先由AC与BD互相垂直且平分,可证得四边形ABCD是菱形,又由BD=6,AC=8,即可求得答案.

解答 解:∵AC与BD互相垂直且平分,
∴AD=AB=BC=CD,
∴四边形ABCD是菱形,
∵BD=6,AC=8,
∴OA=$\frac{1}{2}$AC=4,OB=$\frac{1}{2}$BD=3,
∴AB=$\sqrt{O{A}^{2}+O{B}^{2}}$=5,
∴四边形周长为:20,面积为:$\frac{1}{2}$×6×8=24.
故答案为:20,24.

点评 此题考查了菱形的判定与性质以及线段垂直平分线的性质.注意证得四边形ABCD是菱形是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网