题目内容

11.下面的图象反映的过程是:
甲、乙两人同时从A地出发,以各自的速度匀速向B地行驶,甲先到B地停留半小时后,按原路以另一速度匀速返回,直至与乙相遇.乙的速度为60千米/时,y(千米)表示甲、乙两人相距的距离,x(小时)表示乙行驶的时间.请根据图象回答下列问题:
(1)A、B两地相距多少千米?
(2)求点D的坐标.
(3)甲往返的速度分别是多少?

分析 (1)根据题意解方程得出甲车得速度,然后根据题意求得A、B两地的距离即可.
(2)根据两车之间的距离y(千米)与乙车行驶时间x(小时)之间的函数关系及乙车的速度为每小时60千米可得出D的坐标;
(3)根据题意列出方程,通过解方程得出甲车得速度.

解答 解:(1)设甲的速度为xkm/h,根据题意得
2(x-60)=185,
解得:x=152.5,
由于152.5×2=305,
故A、B两地相距305千米;

(2)∵甲车先到达B地,停留半小时后按原路以另一速度匀速返回,
∴D的横轴应为2.5;
∵乙车的速度为每小时60千米,
∴半小时后行驶距离为30km,故纵轴应为185-30=155;
∴点D的坐标(2.5,155).

(3)由(1)可知甲车去时的速度为152千米/时;
设甲车返回时行驶速度v千米/时,则
(v+60)×1=155,
解得v=95.
故甲返回的速度是95千米/时.

点评 本题主要考查了一次函数的综合题,解答要注意数形结合思想的运用,是各地中考的热点,同学们要加强训练,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网