题目内容
计算:(1-| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 92 |
| 1 |
| 102 |
分析:利用平方差公式对各项分解因式,前一项与后一项出现倒数,然后再根据有理数的乘法计算即可.
解答:解:(1-
)(1-
)…(1-
)(1-
),
=(1-
)(1+
)(1-
)(1+
)•…•(1-
)(1+
)(1-
)(1+
),
=
×
×
×
×
×
×…×
×
×
×
,
=
×
,
=
.
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| 92 |
| 1 |
| 102 |
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 9 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| 10 |
=
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 4 |
| 3 |
| 3 |
| 4 |
| 5 |
| 4 |
| 8 |
| 9 |
| 10 |
| 9 |
| 9 |
| 10 |
| 11 |
| 10 |
=
| 1 |
| 2 |
| 11 |
| 10 |
=
| 11 |
| 20 |
点评:本题考查了平方差公式的逆运用,利用公式分解成两数的积,并且出现倒数相乘是解题的关键,求解方法灵活巧妙.
练习册系列答案
相关题目