题目内容
(1)使∠APB=30°的点P有
(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;
(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.
考点:圆的综合题,三角形的外角性质,等边三角形的性质,勾股定理,矩形的判定与性质,垂径定理,圆周角定理,切线的性质
专题:综合题,压轴题,探究型
分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.
(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.
(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.
(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.
(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.
解答:
解:(1)以AB为边,在第一象限内作等边三角形ABC,
以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.
在优弧AP1B上任取一点P,如图1,
则∠APB=
∠ACB=
×60°=30°.
∴使∠APB=30°的点P有无数个.
故答案为:无数.
(2)①当点P在y轴的正半轴上时,
过点C作CG⊥AB,垂足为G,如图1.
∵点A(1,0),点B(5,0),
∴OA=1,OB=5.
∴AB=4.
∵点C为圆心,CG⊥AB,
∴AG=BG=
AB=2.
∴OG=OA+AG=3.
∵△ABC是等边三角形,
∴AC=BC=AB=4.
∴CG=
=
=2
.
∴点C的坐标为(3,2
).
过点C作CD⊥y轴,垂足为D,连接CP2,如图1,
∵点C的坐标为(3,2
),
∴CD=3,OD=2
.
∵P1、P2是⊙C与y轴的交点,
∴∠AP1B=∠AP2B=30°.
∵CP2=CA=4,CD=3,
∴DP2=
=
.
∵点C为圆心,CD⊥P1P2,
∴P1D=P2D=
.
∴P2(0,2
-
).P1(0,2
+
).
②当点P在y轴的负半轴上时,
同理可得:P3(0,-2
-
).P4(0,-2
+
).
综上所述:满足条件的点P的坐标有:
(0,2
-
)、(0,2
+
)、(0,-2
-
)、(0,-2
+
).
(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.
理由:可证:∠APB=∠AEH,当∠APB最大时,∠AEH最大. 由sin∠AEH=
得:当AE最小即PE最小时,∠AEH最大.所以当圆与y轴相切时,∠APB最大.
①当点P在y轴的正半轴上时,
连接EA,作EH⊥x轴,垂足为H,如图2.
∵⊙E与y轴相切于点P,
∴PE⊥OP.
∵EH⊥AB,OP⊥OH,
∴∠EPO=∠POH=∠EHO=90°.
∴四边形OPEH是矩形.
∴OP=EH,PE=OH=3.
∴EA=3.
∵∠EHA=90°,AH=2,EA=3,
∴EH=
=
=
∴OP=
∴P(0,
).
②当点P在y轴的负半轴上时,
同理可得:P(0,-
).
理由:
①若点P在y轴的正半轴上,
在y轴的正半轴上任取一点M(不与点P重合),
连接MA,MB,交⊙E于点N,连接NA,如图2所示.
∵∠ANB是△AMN的外角,
∴∠ANB>∠AMB.
∵∠APB=∠ANB,
∴∠APB>∠AMB.
②若点P在y轴的负半轴上,
同理可证得:∠APB>∠AMB.
综上所述:当点P在y轴上移动时,∠APB有最大值,
此时点P的坐标为(0,
)和(0,-
).
以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.
在优弧AP1B上任取一点P,如图1,
则∠APB=
| 1 |
| 2 |
| 1 |
| 2 |
∴使∠APB=30°的点P有无数个.
故答案为:无数.
(2)①当点P在y轴的正半轴上时,
过点C作CG⊥AB,垂足为G,如图1.
∵点A(1,0),点B(5,0),
∴OA=1,OB=5.
∴AB=4.
∵点C为圆心,CG⊥AB,
∴AG=BG=
| 1 |
| 2 |
∴OG=OA+AG=3.
∵△ABC是等边三角形,
∴AC=BC=AB=4.
∴CG=
| AC2-AG2 |
=
| 42-22 |
=2
| 3 |
∴点C的坐标为(3,2
| 3 |
过点C作CD⊥y轴,垂足为D,连接CP2,如图1,
∵点C的坐标为(3,2
| 3 |
∴CD=3,OD=2
| 3 |
∵P1、P2是⊙C与y轴的交点,
∴∠AP1B=∠AP2B=30°.
∵CP2=CA=4,CD=3,
∴DP2=
| 42-32 |
| 7 |
∵点C为圆心,CD⊥P1P2,
∴P1D=P2D=
| 7 |
∴P2(0,2
| 3 |
| 7 |
| 3 |
| 7 |
②当点P在y轴的负半轴上时,
同理可得:P3(0,-2
| 3 |
| 7 |
| 3 |
| 7 |
综上所述:满足条件的点P的坐标有:
(0,2
| 3 |
| 7 |
| 3 |
| 7 |
| 3 |
| 7 |
| 3 |
| 7 |
(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.
理由:可证:∠APB=∠AEH,当∠APB最大时,∠AEH最大. 由sin∠AEH=
| 2 |
| AE |
①当点P在y轴的正半轴上时,
连接EA,作EH⊥x轴,垂足为H,如图2.
∵⊙E与y轴相切于点P,
∴PE⊥OP.
∵EH⊥AB,OP⊥OH,
∴∠EPO=∠POH=∠EHO=90°.
∴四边形OPEH是矩形.
∴OP=EH,PE=OH=3.
∴EA=3.
∵∠EHA=90°,AH=2,EA=3,
∴EH=
| EA2-AH2 |
=
| 32-22 |
=
| 5 |
∴OP=
| 5 |
∴P(0,
| 5 |
②当点P在y轴的负半轴上时,
同理可得:P(0,-
| 5 |
理由:
①若点P在y轴的正半轴上,
在y轴的正半轴上任取一点M(不与点P重合),
连接MA,MB,交⊙E于点N,连接NA,如图2所示.
∵∠ANB是△AMN的外角,
∴∠ANB>∠AMB.
∵∠APB=∠ANB,
∴∠APB>∠AMB.
②若点P在y轴的负半轴上,
同理可证得:∠APB>∠AMB.
综上所述:当点P在y轴上移动时,∠APB有最大值,
此时点P的坐标为(0,
| 5 |
| 5 |
点评:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.
练习册系列答案
相关题目