题目内容

15.如图,在△MBN中,BM=6,点A、C、D分别在MB、NB、MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则?ABCD的周长是(  )
A.24B.18C.16D.12

分析 首先根据平行四边形的性质可得AB∥DC,AD∥BN,根据平行线的性质可得∠N=∠ADM,∠M=∠NDC,再由∠NDC=∠MDA,可得∠N=∠NDC,∠M=∠MDA,∠M=∠N,根据等角对等边可得CN=DC,AD=MA,NB=MB,进而得到答案.

解答 解:∵四边形ABCD为平行四边形,
∴AD=BC,DC=AB,AB∥DC,AD∥BN,
∴∠N=∠ADM,∠M=∠NDC,
∵∠NDC=∠MDA,
∴∠N=∠NDC,∠M=∠MDA,∠M=∠N,
∴CN=DC,AD=MA,NB=MB,
∴平行四边形ABCD的周长是 BM+BN=6+6=12,
故答案为:12.

点评 此题主要考查了平行四边形的性质,关键是掌握平行四边形对边相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网