ÌâÄ¿ÄÚÈÝ
ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¶þ´Îº¯Êýy=x2+bx+cµÄͼÏóÓëxÖá½»ÓÚA¡¢BÁ½µã£¬ AµãÔÚÔµãµÄ×ó²à£¬BµãµÄ×ø±êΪ£¨3£¬0£©£¬ÓëyÖá½»ÓÚC£¨0£¬-3£©µã£¬µãPÊÇÖ±ÏßBCÏ·½µÄÅ×ÎïÏßÉÏÒ»¶¯µã.
£¨1£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ±í´ïʽ£®
£¨2£©Á¬½áPO¡¢PC£¬²¢°Ñ¡÷POCÑØCO·ÕÛ£¬µÃµ½ËıßÐÎPOP¡äC£¬ ÄÇôÊÇ·ñ´æÔÚµãP£¬Ê¹ËıßÐÎPOP¡äCΪÁâÐΣ¿Èô´æÔÚ£¬ÇëÇó³ö´ËʱµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©µ±µãPÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬ËıßÐÎ ABPCµÄÃæ»ý×î´ó²¢Çó³ö´ËʱPµãµÄ×ø±êºÍËıßÐÎABPCµÄ×î´óÃæ»ý.
£¨1£©y=x2-2x-3£»£¨2£©µãP£¨
£¬-
£©£»£¨3£©µ±x=
ʱ£¬ËıßÐÎABPCµÄÃæ»ý×î´ó£®´ËʱPµãµÄ×ø±êΪ£¨
£¬-
£©£¬ËıßÐÎABPCµÄÃæ»ý
£®
¡¾½âÎö¡¿
ÊÔÌâ·ÖÎö£º£¨1£©°ÑB¡¢CÁ½µãµÄ×ø±ê´úÈë¶þ´Îº¯Êýy=x2+bx+c¼´¿ÉÇó³öbcµÄÖµ£¬¹Ê¿ÉµÃ³ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÓÉÓÚËıßÐÎPOP¡äCΪÁâÐΣ¬OC±ØÎª¶Ô½ÇÏߣ¬½ø¶ø¿ÉÖªOCµÄÖд¹ÏßÓëyÖáÓұߵÄÅ×ÎïÏß²¿·ÖµÄ½»µã¼´ÎªPµã£¬ÇÒPµãµÄ×Ý×ø±êΪOC³¤µÄÒ»°ëµÄÏà·´Êý£¬×îÖտɵÃPµãµÄ×ø±ê£®
£¨3£©¹ýµãP×÷yÖáµÄƽÐÐÏßÓëBC½»ÓÚµãQ£¬ÓëOB½»ÓÚµãE£¬ÉèP£¨x£¬x2-2x-3£©£¬Ò׵ã¬Ö±ÏßBCµÄ½âÎöʽΪy=x-3ÔòQµãµÄ×ø±êΪ£¨x£¬x-3£©£¬ÔÙ¸ù¾ÝSËıßÐÎABPC=S¡÷ABC+S¡÷BPQ+S¡÷CPQ¼´¿ÉµÃ³ö½áÂÛ£®
ÊÔÌâ½âÎö£º£¨1£©¡ßµãB£¨3£¬0£©£¬C£¨0£¬-3£©ÔÚ¶þ´Îº¯Êýy=x2+bx+cµÄͼÏóÉÏ£¬
¡à½«B¡¢CÁ½µãµÄ×ø±ê´úÈëµÃ
£¬½âµÃ£º
¡à¶þ´Îº¯ÊýµÄ±í´ïʽΪ£ºy=x2-2x-3£»
£¨2£©ÓÉÓÚÁâÐεĶԽÇÏß»¥Ïഹֱƽ·Ö£¬ËùÒÔµãP±ØÔÚOCµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬ÔòµãPµÄ×Ý×ø±êΪ-
£¬´úÈëÅ×ÎïÏßy=x2-2x-3ÖУ¬µÃ£º-
=x2-2x-3£¬
½âµÃ x1=
£¬x2=
£¨ÉáÈ¥£©
¡àµãP£¨
£¬-
£©
£¨3£©¹ýµãP×÷yÖáµÄƽÐÐÏßÓëBC½»ÓÚµãQ£¬ÓëOB½»ÓÚµãE£¬
![]()
ÉèP£¨x£¬x2-2x-3£©£¬
ÉèÖ±ÏßBCµÄ½âÎöʽΪy=kx+b£¨k¡Ù0£©£¬
¡ßB£¨3£¬0£©£¬C£¨0£¬-3£©£¬
¡à
£¬
½âµÃ
£¬
¡àÖ±ÏßBCµÄ½âÎöʽΪy=x-3£®
¡àQµãµÄ×ø±êΪ£¨x£¬x-3£©£¬
¡àSËıßÐÎABPC=S¡÷ABC+S¡÷BPQ+S¡÷CPQ
=
ABOC+
QPOE+
QPEB
=
¡Á4¡Á3+
£¨3x-x2£©¡Á3
=-
£¨x-
£©2+
£¬
¡àµ±x=
ʱ£¬ËıßÐÎABPCµÄÃæ»ý×î´ó£®´ËʱPµãµÄ×ø±êΪ£¨
£¬-
£©£¬ËıßÐÎABPCµÄÃæ»ý
£®
¿¼µã£º¶þ´Îº¯Êý×ÛºÏÌ⣮