题目内容
观察等式:
=1-
,
=
-
,
=
-
,
将以上三个等式两边分别相加得
+
+
=1-
+
-
+
-
=1-
=
.
(1)猜想并写出:
=
-
-
.
(2)直接写出下式的计算结果:
+
+
+…+
=
.
(3)探究并计算:
+
+
+…+
=
.
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
将以上三个等式两边分别相加得
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
(1)猜想并写出:
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
(2)直接写出下式的计算结果:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2010×2011 |
| 2010 |
| 2011 |
| 2010 |
| 2011 |
(3)探究并计算:
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 2009×2011 |
| 1005 |
| 2011 |
| 1005 |
| 2011 |
分析:(1)观察已知等式,由特殊到一般,得出结论;
(2)由(1)的结论,将每个分数化为两个分数,寻找抵消规律,计算结果;
(3)与(2)比较,分母的两个因数相差2,故各分子需要乘以2,才能将一个分数拆分为两个分数,再寻找抵消规律.
(2)由(1)的结论,将每个分数化为两个分数,寻找抵消规律,计算结果;
(3)与(2)比较,分母的两个因数相差2,故各分子需要乘以2,才能将一个分数拆分为两个分数,再寻找抵消规律.
解答:解:(1)由已知等式,得
=
-
,
故答案为:
-
;
(2)由分数拆分,抵消规律可知,
+
+
+…+
=
,
故答案为:
;
(3)
+
+
+…+
=
(
+
+
+…+
)
=
(1-
+
-
+
-
+…+
-
)
=
(1-
)
=
.
故答案为:
.
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
故答案为:
| 1 |
| n |
| 1 |
| n+1 |
(2)由分数拆分,抵消规律可知,
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2010×2011 |
| 2010 |
| 2011 |
故答案为:
| 2010 |
| 2011 |
(3)
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 5×7 |
| 1 |
| 2009×2011 |
| 1 |
| 2 |
| 2 |
| 1×3 |
| 2 |
| 3×5 |
| 2 |
| 5×7 |
| 2 |
| 2009×2011 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 7 |
| 1 |
| 2009 |
| 1 |
| 2011 |
=
| 1 |
| 2 |
| 1 |
| 2011 |
=
| 1005 |
| 2011 |
故答案为:
| 1005 |
| 2011 |
点评:本题考查的是有理数的运算能力.关键是根据已知等式,由特殊到一般,得出分数的拆分规律和抵消规律.
练习册系列答案
相关题目