题目内容
计算(﹣3)2的结果是( )
A. ﹣6 B. 6 C. ﹣9 D. 9
D. 解:(﹣3)2=(﹣3)×(﹣3)=9.
如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为( )
A.1或2 B. 2或3 C. 3或4 D. 4或5
在Rt△ABC中,∠BAC=90°,过点B的直线MN∥AC,D为BC边上一点,连接AD,作DE⊥AD交MN于点E,连接AE.
(1)如图①,当∠ABC=45°时,求证:AD=DE;
(2)如图②,当∠ABC=30°时,线段AD与DE有何数量关系?并请说明理由;
(3)当∠ABC=α时,请直接写出线段AD与DE的数量关系.(用含α的三角函数表示)
圆锥的底面直径是8,母线长是5,则这个圆锥的侧面积是
某市招聘教师,对应聘者分别进行教学能力、科研能力、组织能力三项测试,其中甲、乙两人的成就如下表:(单位:分)
项目
人员 教学能力 科研能力 组织能力
甲 86 93 73
乙 81 95 79
(1)根据实际需要,将阅读能力、科研能力、组织能力三项测试得分按5:3:2的比确定最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?
(2)按照(1)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值),并决定由高分到低分录用8人.甲、乙两人能否被录用?请说明理由.
如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是( )
A. k>0,b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<0
如图,已知AB是⊙O的直径,点C在⊙O上,若∠CAB=40°,则∠ABC的度数为 .
2—3可以表示为
A.22÷25 B.25÷22 C.22×25 D.(-2)×(-2)×(-2)
如图,▱ABCD中,点E,F在对角线BD上,且BE=DF,求证:
(1)AE=CF;
(2)四边形AECF是平行四边形.