题目内容


如图,▱ABCD中,点E,F在对角线BD上,且BE=DF,求证:

(1)AE=CF;

(2)四边形AECF是平行四边形.


证明:(1)∵四边形ABCD是平行四边形,

∴AB=CD,AB∥CD.

∴∠ABE=∠CDF.

在△ABE和△CDF中,

∴△ABE≌△DCF(SAS).

∴AE=CF.

(2)∵△ABE≌△DCF,

∴∠AEB=∠CFD,

∴∠AEF=∠CFE,

∴AE∥CF,

∵AE=CF,

∴四边形AECF是平行四边形.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网