ÌâÄ¿ÄÚÈÝ
10£®ÒÑÖª·´±ÈÀýÁ½Êýy=$\frac{k}{x}$µÄͼÏóÓëÒ»´Îº¯Êýy=kx+mµÄͼÏóÏཻÓÚµãA£¨2£¬1£©£®£¨1£©·Ö±ðÇó³öÕâÁ½¸öº¯ÊýµÄ½âÎöʽ£®
£¨2£©Çó·´±ÈÀýËùÊýµÄÖµ´óÓÚ0ʱµÄxµÄȡֵ·¶Î§£®
£¨3£©ÈôÒ»´Îº¯ÊýÓë·´±ÈÀý³ÐÊýµÄÁíÒ»¸ö½»µãΪB£¬ÇÒ×Ý×ø±êΪ-4£¬µ±xµÄȡֵÔÚʲô·¶Î§ÄÚʱ£¬·´±ÈÀýº¯ÊýµÄÖµ´óÓÚÒ»´Îº¯ÊýµÄÖµ£¿µ±xµÄȡֵÔÚʲô·¶Î§ÄÚʱ£¬·´±ÈÀýº¯ÊýµÄֵСÓÚÒ»´Îº¯ÊýµÄÖµ£¿
·ÖÎö £¨1£©ÏȰÑAµã×ø±ê´úÈëy=$\frac{k}{x}$£¬Çó³ök£¬°ÑAµã×ø±ê´úÈëy=kx+m£¬È»ºóÀûÓôý¶¨ÏµÊý·¨ÇóÒ»´Îº¯Êý½âÎöʽ£»
£¨2£©¸ù¾Ý·´±ÈÀýº¯ÊýµÄÐÔÖÊ£¬ÇóµÃxµÄȡֵ·¶Î§¼´¿É£»
£¨3£©»³öº¯ÊýµÄͼÏ󣬸ù¾Ýº¯ÊýͼÏ󣬷´±ÈÀýº¯ÊýͼÏó¶¼ÔÚÒ»´Îº¯ÊýͼÏóÉÏ·½£¬·´±ÈÀýº¯ÊýͼÏó¶¼ÔÚÒ»´Îº¯ÊýͼÏóÏ·½µÃ³öxµÄȡֵ£®
½â´ð ½â£º£¨1£©¡ß·´±ÈÀýÁ½Êýy=$\frac{k}{x}$µÄͼÏóÓëÒ»´Îº¯Êýy=kx+mµÄͼÏóÏཻÓÚµãA£¨2£¬1£©£¬
¡àk=2£¬m=-3£¬
¡à·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=$\frac{2}{x}$£¬Ò»´Îº¯ÊýµÄ½âÎöʽΪy=2x-3£»
£¨2£©¡ß·´±ÈÀýº¯ÊýµÄ½âÎöʽΪy=$\frac{2}{x}$£¬
¡àͼÏóλÓÚÒ»¡¢ÈýÏóÏÞ£¬
¡àµ±x£¾0ʱ£¬·´±ÈÀýËùÊýµÄÖµ´óÓÚ0£¬
¡à±ÈÀýËùÊýµÄÖµ´óÓÚ0ʱµÄxµÄȡֵ·¶Î§ÊÇx£¾0£»
£¨3£©»³öº¯ÊýµÄͼÏóÈçͼ£¬![]()
¡ßBµãµÄ×Ý×ø±êΪ-4£¬
¡à-4=$\frac{2}{x}$£¬½âµÃx=-$\frac{1}{2}$£¬
¡àB£¨-$\frac{1}{2}$£¬-4£©£¬
¡ßA£¨2£¬1£©£¬
¡àÓÉͼÏó¿ÉÖª£¬µ±-$\frac{1}{2}$£¼x£¼0»òx£¾2ʱ£¬·´±ÈÀýº¯ÊýµÄֵСÓÚÒ»´Îº¯ÊýµÄÖµ£®
µãÆÀ ±¾Ì⿼²éÁË·´±ÈÀýº¯ÊýºÍÒ»´Îº¯ÊýµÄ½âÎöʽµÄ½»µãÎÊÌ⣬Óôý¶¨ÏµÊý·¨Çó·´±ÈÀýº¯ºÍÒ»´Îº¯ÊýµÄ½âÎöʽÒÔ¼°º¯ÊýºÍ²»µÈʽµÄ¹ØÏµ£¬ÊýÐνáºÏ˼ÏëµÄÔËÓÃÊǽâÌâµÄ¹Ø¼ü£®
| A£® | £¨-2£¬3£© | B£® | £¨-3£¬2£© | C£® | £¨3£¬2£© | D£® | £¨2£¬-3£© |
| A£® | -$\frac{11}{4}$ | B£® | 7 | C£® | 7»ò-$\frac{3}{7}$ | D£® | -$\frac{11}{4}$»ò-$\frac{9}{8}$ |