题目内容
如图,已知B是线段AE上一点,ABCD和BEFG都是正方形,连接AG、CE.
(1)求证:AG=CE;
(2)设CE与GF的交点为P,求证:
=
.

(1)求证:AG=CE;
(2)设CE与GF的交点为P,求证:
| PG |
| CG |
| PE |
| AG |
证明:(1)∵四边形ABCD和BEFG是正方形,
∴AB=CB,BG=BE,∠ABG=∠CBE=90°,
∴△ABG≌△CBE,
∴AG=CE,
(2)∵PG∥BE
∴
=
,
=
,
∵BG=BE,AG=CE,
∴
=
,
=
,
∴
=
.
∴AB=CB,BG=BE,∠ABG=∠CBE=90°,
∴△ABG≌△CBE,
∴AG=CE,
(2)∵PG∥BE
∴
| PG |
| BE |
| CG |
| CB |
| BG |
| CB |
| PE |
| CE |
∵BG=BE,AG=CE,
∴
| PG |
| CG |
| BG |
| CB |
| BG |
| CB |
| PE |
| AG |
∴
| PG |
| CG |
| PE |
| AG |
练习册系列答案
相关题目