题目内容

如图,在半径为3的扇形AOB中,∠AOB=90°,点C是弧AB上一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.
(1)当BC=2时,求线段OD的长;
(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.
考点:垂径定理,勾股定理,三角形中位线定理
专题:
分析:(1)利用垂径定理,在直角△OBD中,利用勾股定理即可求解;
(2)连接AB,由OD垂直于BC,OE垂直于AC,利用垂径定理得到D、E分别为BC、AC的中点,即ED为三角形ABC的中位线,由OA=OB=2,且∠AOB=90°,利用勾股定理求出AB的长,即可求出ED的长.
解答:解:(1)∵OD⊥BC,
∴BD=
1
2
BC=1,
在直角△OBD中,OD=
OB2-BD2
=
32-12
=2
2

(2)连接AB,
∵OD⊥BC,OE⊥AC,
∴D、E分别为BC、AC的中点,
∴DE为△ABC的中位线,
∵OA=OB=2,∠AOB=90°,
∴根据勾股定理得:AB=
OA2+OB2
=3
2

则DE=
1
2
AB=
3
2
2
点评:此题考查了垂径定理,勾股定理,以及三角形的中位线定理,熟练掌握定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网