题目内容
8.已知2是关于x的方程x2-2mx+3m=0的一个根,并且等腰三角形ABC的腰和底边长恰好是这个方程的两个根,则△ABC的周长为( )| A. | 10 | B. | 14 | C. | 10或14 | D. | 8或10 |
分析 先根据一元二次方程的解的定义把x=2代入方程求出m的值,得到原方程为x2-8x+12=0,再解此方程得到x1=2,x2=6,然后根据三角形三边的关系得到△ABC的腰为6,底边为2,再计算三角形的周长.
解答 解:∵2是关于x的方程x2-2mx+3m=0的一个根,
∴把x=2代入方程整理得:4-4m+3m=0,
∴解得m=4,
∴原方程为:x2-8x+12=0,
∴方程的两个根分别是2,6,
又∵等腰三角形ABC的腰和底边长恰好是这个方程的两个根,
∴若2是等腰三角形ABC的腰长,则2+2=4<6构不成三角形,
∴等腰三角形ABC的腰长为6,底边长为2,
∴三角形ABC的周长为:6+6+2=14,
故选:B.
点评 本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.
练习册系列答案
相关题目
19.某公司在销售一种产品进价为10元的产品时,每年总支出为10万元(不含进价).经过若干年销售得知,年销售量y(万件)是销售单价x(元)的一次函数,并得到如下部分数据:
(1)则y关于x的函数关系式是y=$-\frac{1}{2}x+13$;
(2)写出该公司销售这种产品的年利润w(万元)关于销售单价x(元)的函数关系式;当销售单价x为何值时,年利润最大?
(3)试通过(2)中的函数关系式及其大致图象,帮助该公司确定产品的销售单价范围,使年利润不低于14万元(请直接写出销售单价x的范围).
| 销售单价 x(元) | 16 | 18 | 20 | 22 |
| 年销售量y(万件) | 5 | 4 | 3 | 2 |
(2)写出该公司销售这种产品的年利润w(万元)关于销售单价x(元)的函数关系式;当销售单价x为何值时,年利润最大?
(3)试通过(2)中的函数关系式及其大致图象,帮助该公司确定产品的销售单价范围,使年利润不低于14万元(请直接写出销售单价x的范围).
13.如图是滨河公园中的两个物体,一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是( )

| A. | (3)(4)(1)(2) | B. | (4)(3)(1)(2) | C. | (4)(3)(2)(1) | D. | (2)(4)(3)(1) |