ÌâÄ¿ÄÚÈÝ
3£®Ð¡ÅôºÍС¾êÍæÒ»ÖÖÓÎÏ·£ºÐ¡ÅôÊÖÀïÓÐÈýÕÅÆË¿ËÅÆ·Ö±ðÊÇ3¡¢4¡¢5£¬Ð¡¾êÓÐÁ½ÕÅÆË¿ËÅÆ6¡¢7£¬ÏÖ¶þÈ˸÷×Ô°Ñ×Ô¼ºµÄÅÆÏ´ÔÈ£¬Ð¡Åô´ÓС¾êµÄÅÆÖÐÈÎÒâ³éȡһÕÅ£¬Ð¡¾ê´ÓСÅôµÄÅÆÖÐÈÎÒâ³éȡһÕÅ£¬¼ÆËãÁ½ÕÅÊý×ÖÖ®ºÍ£¬Èç¹ûºÍÎªÆæÊý£¬ÔòСÅôʤ£»Èç¹ûºÍΪżÊýÔòС¾êʤ£®£¨1£©ÓÃÁбí»ò»Ê÷״ͼµÄ·½·¨£¬ÁгöСÅôºÍС¾ê³éµÃµÄÊý×ÖÖ®ºÍËùÓпÉÄܳöÏÖµÄÇé¿ö£»
£¨2£©ÇëÅжϸÃÓÎÏ·¶ÔË«·½ÊÇ·ñ¹«Æ½£¿²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝÌâÒ⻳öÊ÷״ͼ£¬È»ºó¸ù¾Ý¸ÅÂʹ«Ê½ÁÐʽ½øÐмÆËã¼´¿ÉµÃ½â£»
£¨2£©¸ù¾Ý¼ÆËã¸ÅÂʱȽϼ´¿É£®
½â´ð ½â£º£¨1£©»³öÊ÷״ͼÈçÏ£º![]()
£¨2£©´ËÓÎÏ·¹«Æ½£¬ÓÉÊ÷ÐÎͼ¿ÉÖª£ºÐ¡¾êÓ®µÄ¸ÅÂÊ=$\frac{1}{2}$=СÅôÓ®µÄ¸ÅÂÊ£®
µãÆÀ ±¾Ì⿼²éÁËÓÃÁÐ±í·¨»ò»Ê÷״ͼ·¨Çó¸ÅÂÊ£®Óõ½µÄ֪ʶµãΪ£º¸ÅÂÊ=ËùÇóÇé¿öÊýÓë×ÜÇé¿öÊýÖ®±È£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
13£®
Èçͼ£¬ÓÉ7¸öÐÎ×´¡¢´óСÍêÈ«ÏàͬµÄÕýÁù±ßÐÎ×é³ÉµÄÍø¸ñ£¬ÕýÁù±ßÐεĶ¥µã³ÆÎª¸ñµã£¬ÒÑ֪ÿ¸öÕýÁù±ßÐεı߳¤Îª1£¬¡÷ABCµÄ¶¥µã¶¼ÔÚ¸ñµãÉÏ£¬Ôò¡÷ABCµÄÃæ»ýÊÇ£¨¡¡¡¡£©
| A£® | $\sqrt{2}$ | B£® | 2$\sqrt{3}$ | C£® | 3$\sqrt{2}$ | D£® | 3$\sqrt{3}$ |
13£®ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ¶àÏîʽ2x+3x2+1ÊǶþ´ÎÈýÏîʽ | B£® | µ¥ÏîʽaµÄϵÊýÊÇ0£¬´ÎÊýÊÇ0 | ||
| C£® | $\frac{xy-1}{2}$ÊǶþ´Îµ¥Ïîʽ | D£® | µ¥Ïîʽ-$\frac{2}{5}$x2yµÄϵÊýÊÇ-2£¬´ÎÊýÊÇ2 |